Edgewood and Emerald Hills

Post Occupancy Performance Analysis

Objectives

- Our intent is to convey some of the information learned about two different system types in Passive Building projects
- We hope that our experience will help you to evaluate system options for future projects
- You will also gain understanding of some of the issues that can cause buildings to use more energy than modeling predicts

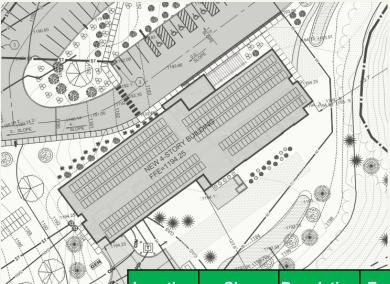
Outline

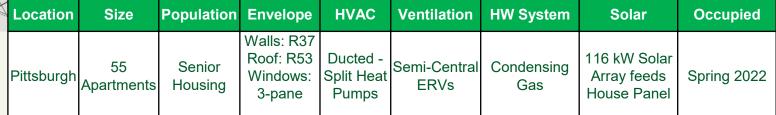
Emerald Hills

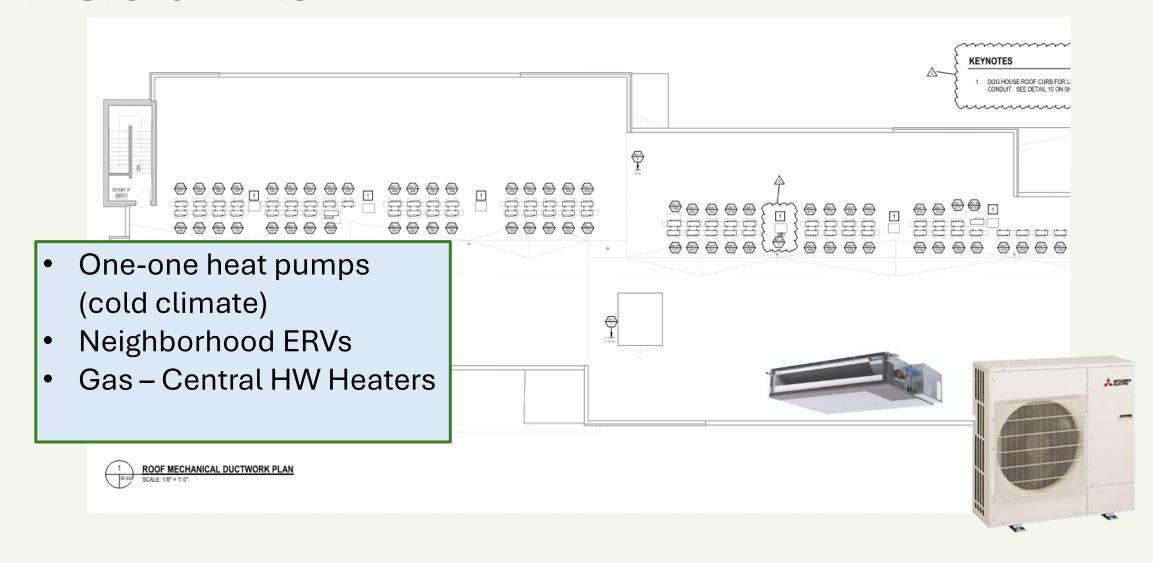
- Building and systems description
- Measured energy consumption versus modeled
- Discussion of discrepancies
- Discussion of construction related issues for Emerald systems

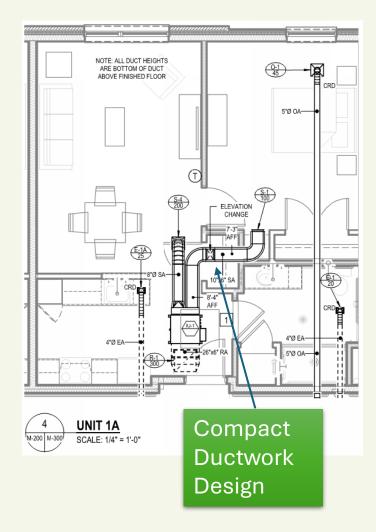
Edgewood

- Building and systems description
- Measured energy consumption versus modeled
- Discussion of discrepancies
- Discussion of construction related issues for Edgewood systems
- Investigation of larger than expected energy consumption for Edgewood
- Discussion of systems comparison


Emerald Hills



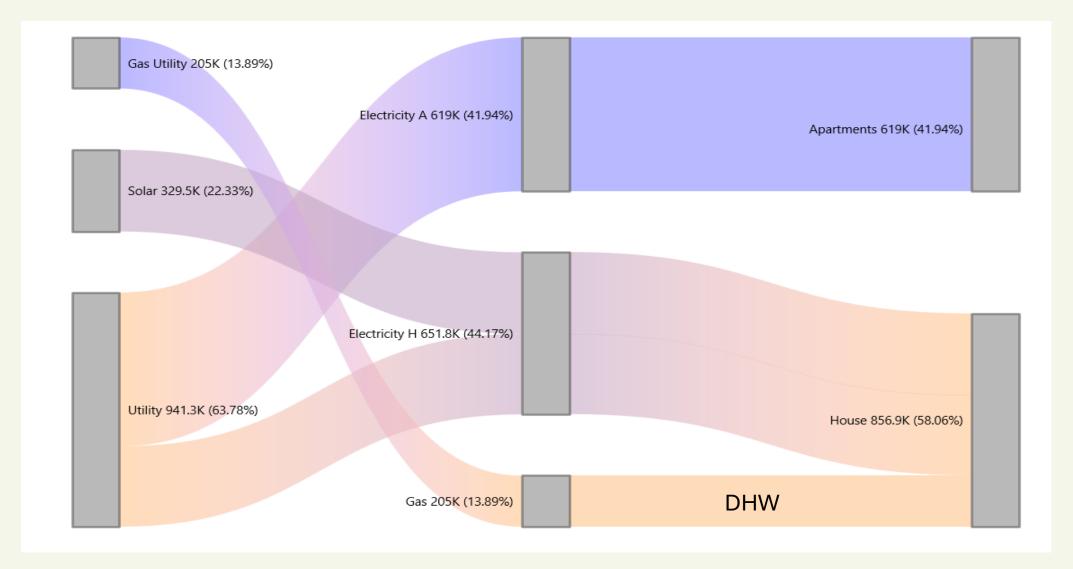




Emerald Hills

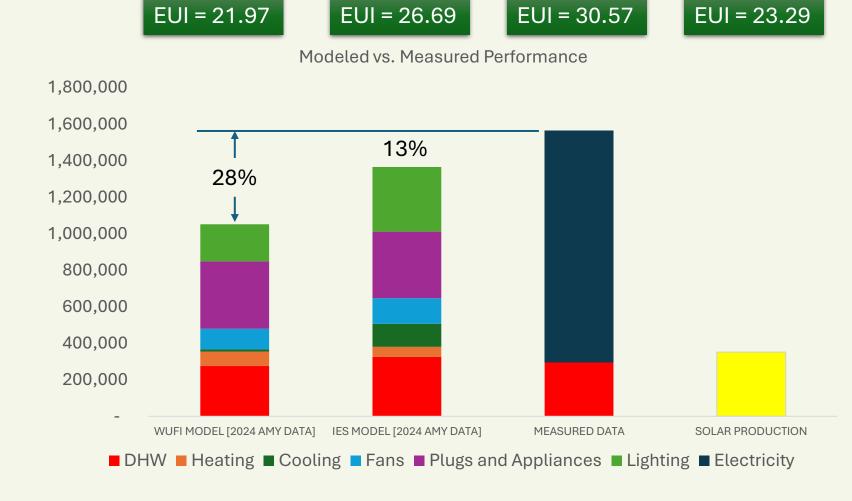
Emerald Hills




Emerald Hills - DHW

- Domestic HW generated by condensing gas HW heaters.
- Three 199,000 BTU/hr sealed combustion heaters.

Results



Energy Performance

Weather Corrected Models:

- WUFI model low on cooling and lighting compared to IES model.
- IES model likely low on HVAC due to less than optimal COP
- Domestic HW energy right in line with models
- Removed solar production from analysis

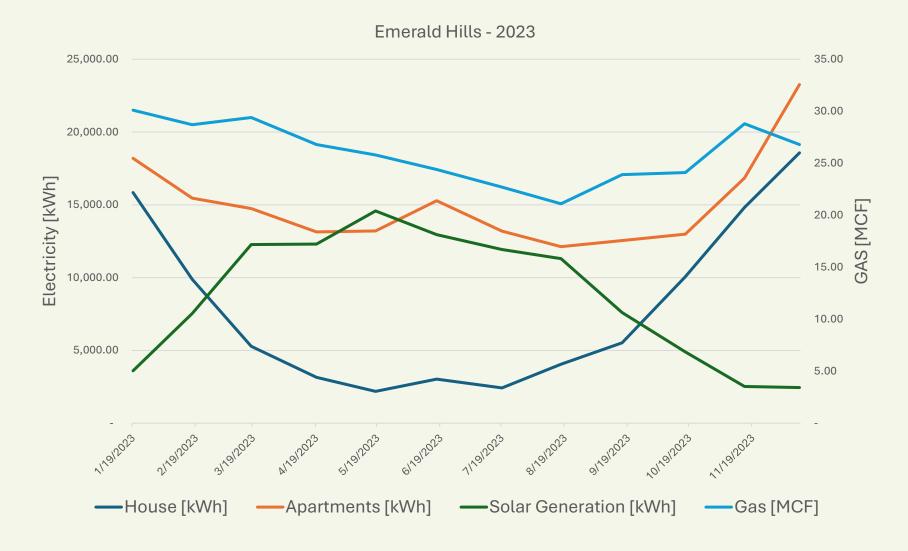
Results

• Emerald Hills ERV fan energy modeled vs actual (estimate).

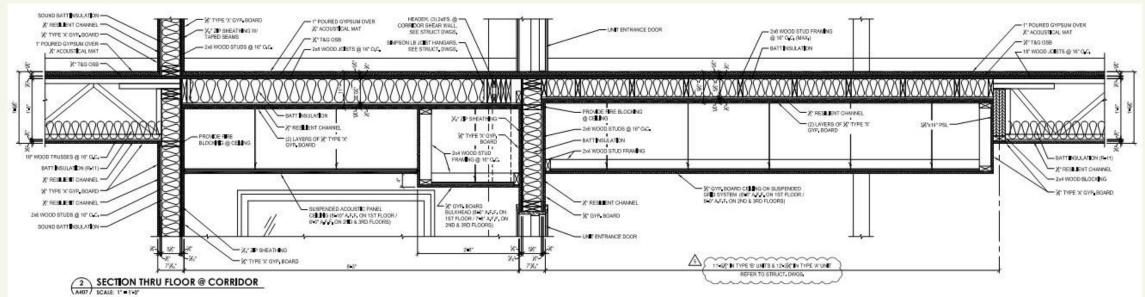
Emerald Hills Engineering Checks

By: G. Staengl J. Nilsen

Date: 8/19/2022


	Measured	Corrected Power	Design Supply Flow	
ERV	Power [W]	Draw [W]	[CFM]	W/CFM
1-5	236	200	355	0.6
1-3	570	534	270	2.0
1-4	50	14	230	0.1
1-6	630	594	360	1.7
1-7	440	404	485	0.8
1-8	280	244	360	0.7
1-9	460	424	435	1.0
2-1	290	254	550	0.5
2-2	450	414	640	0.6
		3082	3685	0.836

Modeled ERV Fan Energy: 109,000 kBTU/yr Calculated ERV Fan Energy: 92,145 kBTU/yr


Actual ERV energy likely larger because power draw goes up as the filters get dirty.

Results

Emerald

Year: 2020

Senior Affordable Housing Apartments 52 total

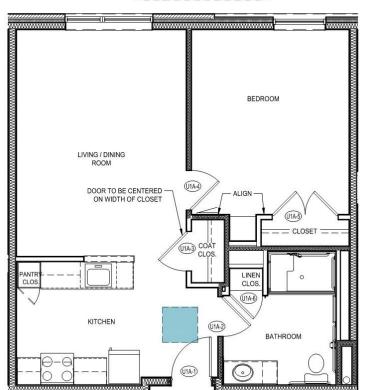
Occupancy: R-2

Construction Type: VB Sprinkler: NFPA 13R floor rating: 1 hour Square footage

 First Floor
 14,733 sq. ft.

 Second Floor
 14,501 sq. ft.

 Third Floor
 14,345 sq. ft.

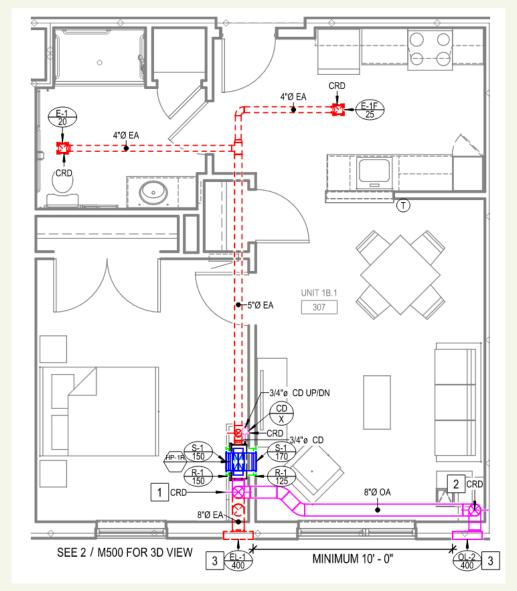

 Fourth Floor
 14,345 sq. ft.

 Total
 57,924 sq. ft.

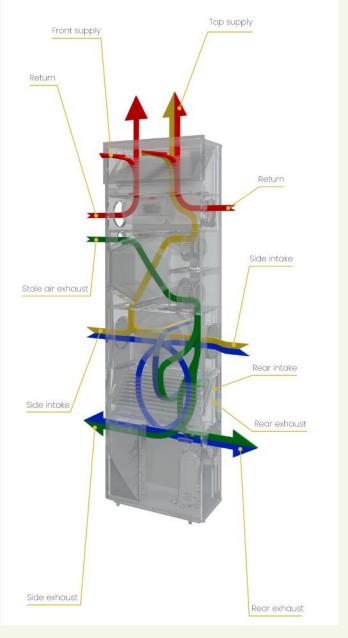
Floor to Floor Heights:

 1^{st} to 2^{nd} : 11''-5'' 2^{nd} to 3^{rd} : 10'-6'' 3^{rd} to 4^{th} : 10'-6''

Edgewood

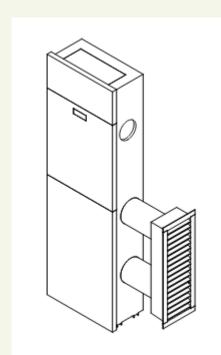

Location	Size	Population	Envelope	HVAC	Ventilation	HW System	Occupied
Pittsburgh	55 Apartments	Senior Housing	Walls: R37 Roof: R53 Windows: 2- pane	EPHOCA All-In-One units	EPHOCA All-In-One units	CO2 Heat Pumps	Spring 2024

Edgewood



EPHOCATM AIO (ALL IN ONE) Heat Pump + ERV

- Heat Pump and ERV combined
- Fresh air is drawn out of the condenser air stream
- Exhaust air is pushed into condenser air exhaust
- ECM fans all around
- Inverter driven compressor



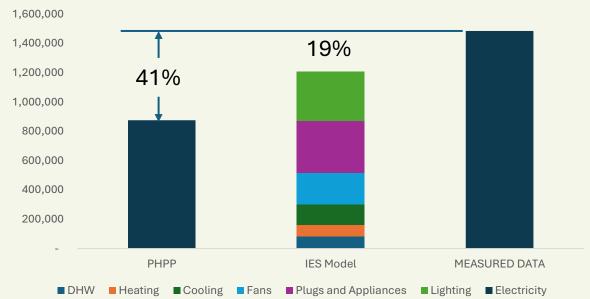
Condenser Air

Code issue forces louver because of built-in ERV.

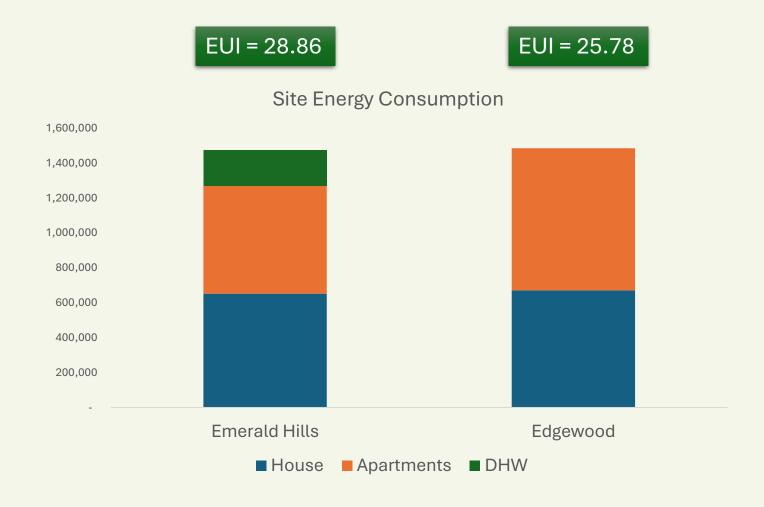
1300 FPM at Max Flow

We typically size louvers at below 700 fpm (less for intake).

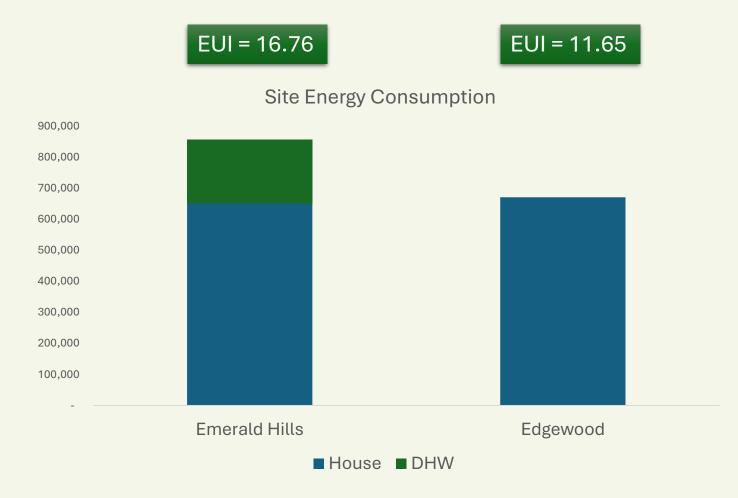
Domestic HW



Results

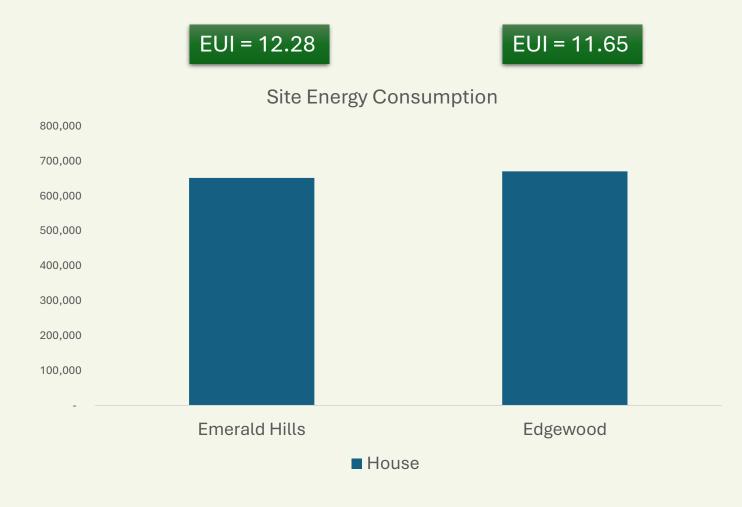

- WUFI model low on cooling and lighting compared to IES model.
- IES model likely low on HVAC due to less than optimal COP?

Comparisons

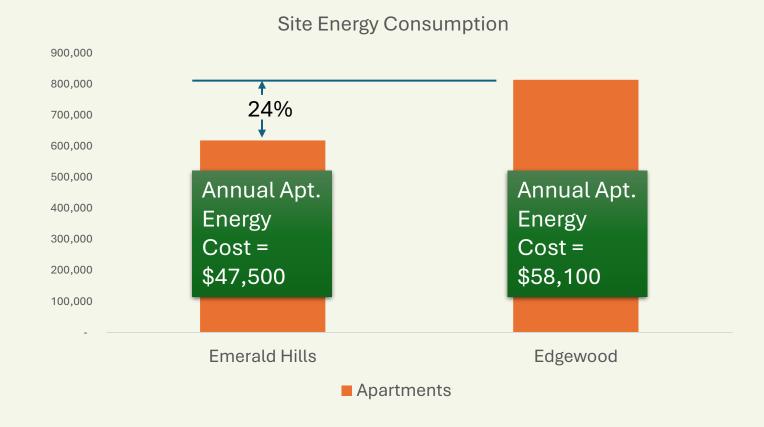


Comparisons - House

 Gas hot water amplifies Emerald Hills site energy (no COP)

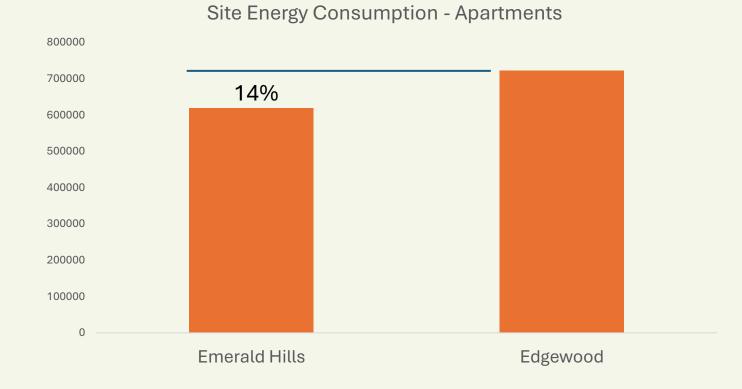

 Neighborhood ERVs on house meter

Comparisons - House

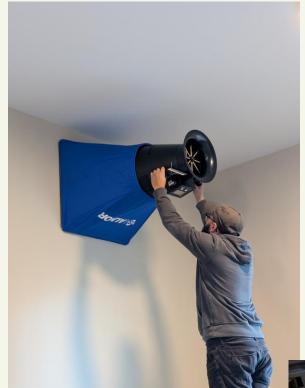

 Corrected with ERV energy and assumed COP of 3 for DHW

Comparisons - Apartments

 Why is apartment energy higher at Edgewood?

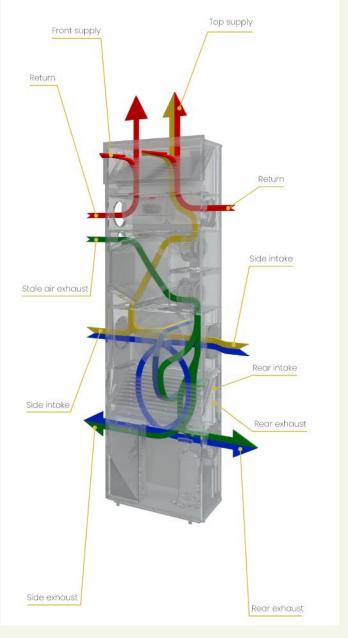


Comparisons - Apartments



- Emerald Hills:
 - One Bedroom:672 sqft
 - Two Bedroom
 - 934 sqft
- Edgewood
 - One Bedroom:
 - 694 sqft (3% larger)
 - Two Bedroom
 - 976 sqft (5% larger)

Investigation


UNIT 105 Outdoor Temp 44 F	
Outdoor Temp 44 F	
Cooling - High Cooling - Medium Cooling - Low	
Setpoint 66 F Setpoint 65 F Setpoint 65 F	
Return Air Temp 74 F Return Air Temp 72 F Return Air Temp 72 F	
Supply Air Temp 48.5 F Supply Air Temp 45 F Supply Air Temp 42 F	
Bedroom Airflow 95 CFM Bedroom Airflow 75 CFM Bedroom Airflow 59 CF	FM
Living Room Airflow 140 CFM Living Room Airflov 115 CFM Living Room Airflov 98 CF	FM
Return Airflow CFM Return Airflow CFM Return Airflow CFM	FM
Current Draw 2.9 A Current Draw 2.33 A Current Draw 1.8 A	
Voltage* 208 V Voltage* 208 V Voltage 208 V	
Watts 603.2 W Watts 484.6 W Watts 374.4 W	1
Output 6472 BTU/hr Output 5540 BTU/hr Output 5086.8 BT	TU/hr
COP 4.558 COP 5.458 COP 7.96164	
Heating - High Heating - Medium Heating - Low	
Setpoint 75 F Setpoint 83 F Setpoint 83 F	
Return Air Temp 73 F Return Air Temp 72 F Return Air Temp 72 F	
Supply Air Temp 94.5 F Supply Air Temp 93 F Supply Air Temp 93.9 F	
Bedroom Airflow 90 CFM Bedroom Airflow 76 CFM Bedroom Airflow 55 CF	FM
Living Room Airflow 135 CFM Living Room Airflov 106 CFM Living Room Airflov 84 CF	FM
Return Airflow CFM Return Airflow CFM Return Airflow CFM	FM
Current Draw 3.5 A Current Draw 3.1 A Current Draw 2.1 A	
Voltage 208 V Voltage 208 V Voltage 208 V	
Watts 728 W Watts 644.8 W Watts 436.8 W	1
Output -5225 BTU/hr Output -4128 BTU/hr Output -3287.6 BT	TU/hr
COP -2.83 COP -2.64 COP -3.8592	
Ventilation Only	
Current Draw 0.9 A	
Voltage 208 V 3.75 W/cfm!	
Watts 187.2 W	
Bathroom Airflow 25 CFM	
Kitchen Airflow 25 CFM	
Bedroom Airflow 23 CFM	
Living Room Airflow 25 CFM	

EPHOCATM AIO (ALL IN ONE) Heat Pump + ERV

- Heat Pump and ERV combined
- Fresh air is drawn out of the condenser air stream
- Exhaust air is pushed into condenser air exhaust
- ECM fans all around
- Inverter driven compressor

Investigation

Investigation Results


- EPHOCA has made a programming change to reduce fan energy when there is not heating or cooling required. This is being rolled out at Edgewood.
- Some units have been found to have restrictions in the return air pathway, which may be leading to increased indoor fan energy and decreased efficiency.
- Construction debris was left in coils which likely reduced efficiency during the first winter season. Coils have been cleaned and are on a regular maintenance schedule.

EPHOCA Updated Programming Results

	Old Firmware 2.0 version	
	Input / Heating mode comp	Input / Cooling mode comp
Fan speed Setting	off / ERV 50CFM	off / ERV 50CFM
V1	95,5 watt	93,3 watt
V2	172 watt	168,7 watt
V3	240 watt	240 watt
Auto	96,3 watt	94,5 watt
	New Firmware 3.0 version	
	Input / Heating mode comp	Input / Cooling mode comp
Fan speed Setting	off / ERV 50CFM	off / ERV 50CFM
V1	31,3 watt	35,9 watt
V2	31,5 watt	38,5 watt
V3	31,7 watt	38,7 watt
Auto	32,1 watt	37,5 watt

Edgewood

Senior Affordable Housing Apartments 52 total

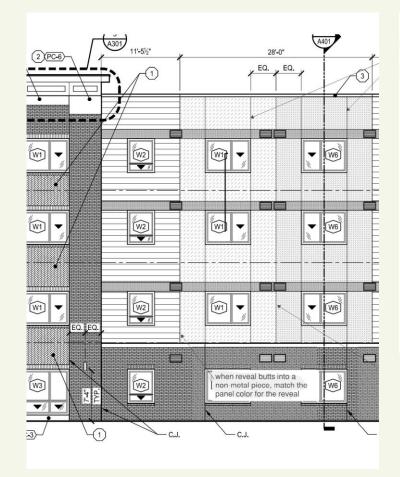
Occupancy:R-2

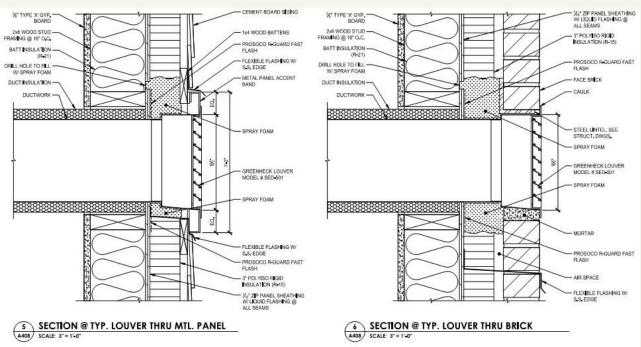
Construction Type: VB Sprinkler: NFPA 13R Square footage

 First Floor
 16,347 sq. ft.

 Second Floor
 15,547 sq. ft.

 Third Floor
 15,547 sq. ft.


 Fourth Floor
 15,547 sq. ft.


 Total
 72,988 sq. ft

Floor to Floor Heights:

 1^{st} to 2^{nd} : 11''-5'' 2^{nd} to 3^{rd} : 11'-8'' 3^{rd} to 4^{th} : 10'-6''

Owner's Perspective

System type comparison

Strategy	Ductwork	Penetrations	Install difficulty
Emerald Hills (ducted splits with neighborhood ERVs)	More ductwork	Less penetrations . Façade coordination	 More challenging due to coordination with ceilings / structure Need slim vertical form factor Site installed refrigeration line-sets Location of ERVs and outdoor condensers
Edgewood (All-in-one)	Much less ductwork, could be even less.	Much more penetrations	More elegant, but need larger intake louver by manufacturer

System type comparison

Strategy	Cost	Equipment Support	Manufacturer Responsiveness	System Complexity
Emerald Hills (ducted splits with neighborhood ERVs)	Lower equipment cost Higher labor cost	Good	Slow – but product is mature and well supported	Separate systems are easier to design and commission because of industry experience
Edgewood (All-in-one)	Higher equipment cost Lower labor cost	Good	Fast	All-in-one is a simpler install, but understand of operation and efficiency is immature - Efficiency standard does not exist yet - Ventilation is integrated, and thus more complex to diagnose and verify

System type comparison

Strategy	Maintenance Required
Emerald Hills (ducted splits with neighborhood ERVs)	Moderate
Edgewood (All-in-one)	Higher - Condenser coil cleaning requires removal of cabinet panels

Cleaning Video

	EMERALD		EDGEWOOD		DIFFERENCE	
Filters	\$	1,259.35	\$ 1,950.00	\$	690.65	
Coil Cleaning	\$	1,081.88	\$ 4,000.00	\$	2,918.12	
Maintenance Contract	\$	5,272.96	\$ 6,231.86	\$	958.90	
TOTAL	\$	7,614.19	\$ 12,181.86	\$	4,567.67	

Thank You!

Rick Avon, AIA, CPHC, Reset Air AP www.avondg.com info@avondg.com (412) 366-0222

Victor Rodriguez
www.cmshousing.com
v.rodriguez@cmshousing.com
(412)231-3621

Galen Staengl, PE, CPHC, LEED AP Devin Wright, PE www.staenglengineering.com gstaengl@staenglengineering.com(434)295-8105

