

Performance, Resilience and Certification

Phius Con

Speakers

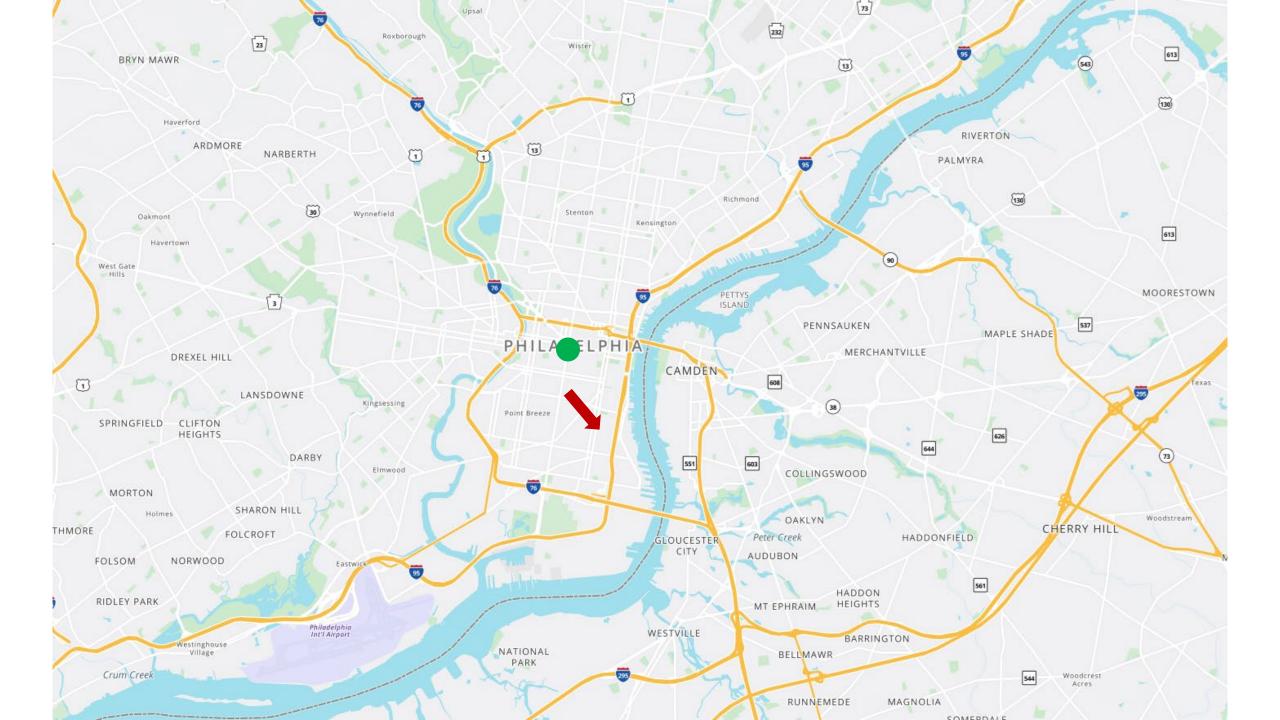
Paul Thompson AIA, CPHC
BluPath Design
blupath.us

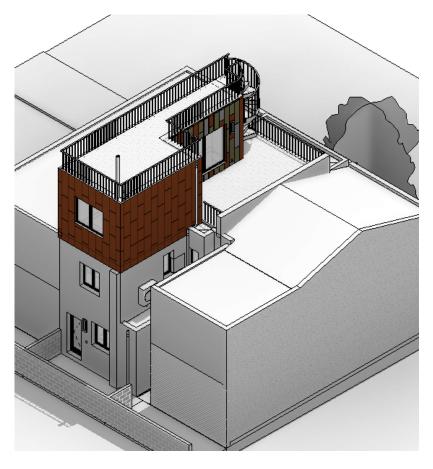
Laura Blau AIA, CPHC, CPHB
BluPath Design
blupath.us

Samina Iqbal AIA, LEED AP, CPHC Samina Iqbal Architect siarchitect.com

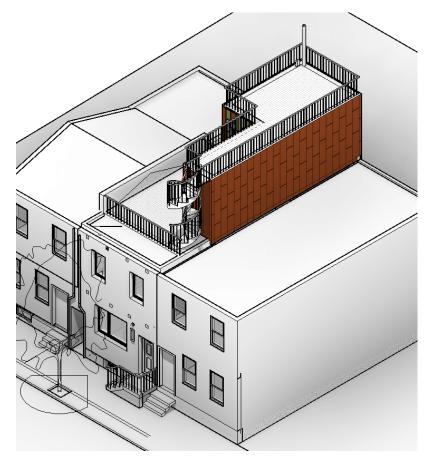
Learning objectives

- 1. Identify potential building science, health, and wellness issues in urban passive building retrofits.
- 2. Discuss resiliency challenges and solutions for buildings in dense urban areas.
- 3. Understand the role of life cycle carbon and cost analysis in guiding design decisions.
- 4. Outline the goals of passive building and the impact on retrofit design.



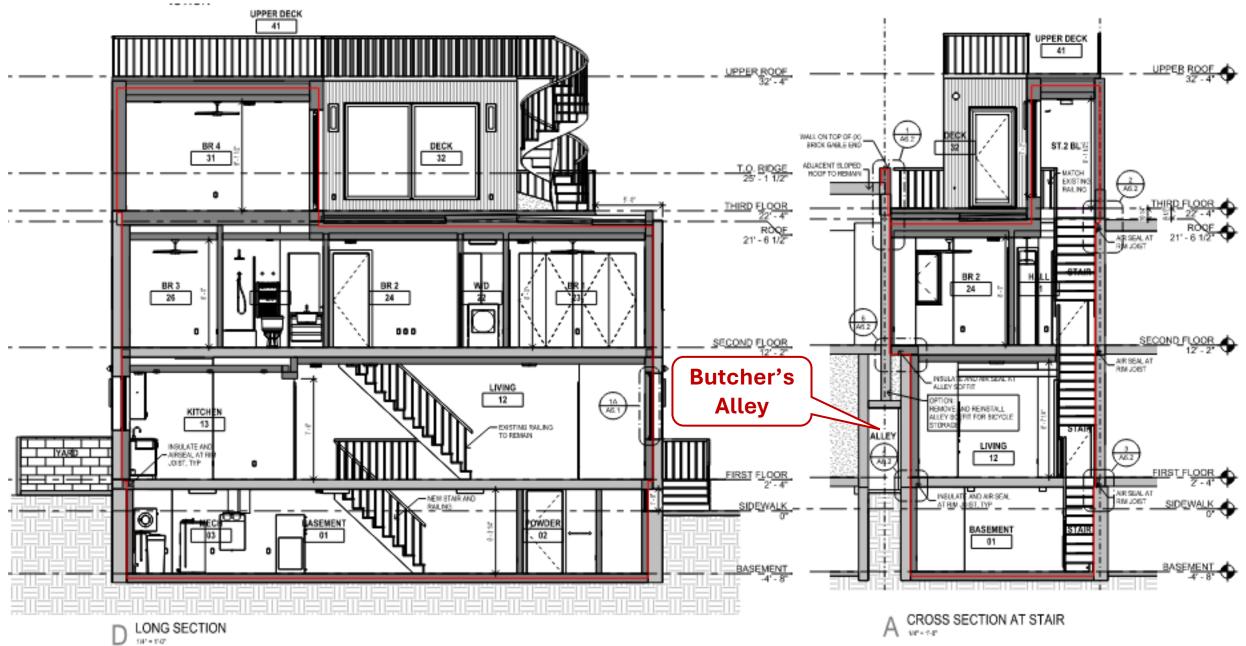

Basement

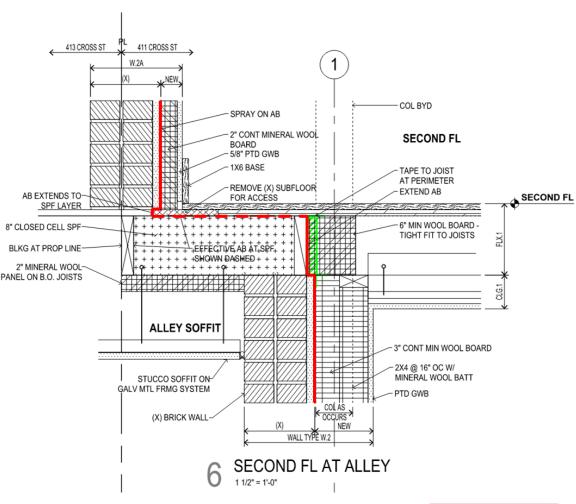
First Floor


Second Floor

PROJECT INFORMATION

- 2-Story brick rowhouse, built ca.1910
- Rear kitchen addition, plus other changes ca. 1950
- South Philly Dickinson Square neighborhood
- Front faces south
- Lot = 16ft wide x 48-6 deep = 768sf
- 984sf on two floors, with unfinished basement (low head height)
- Fire damage May 2023
- Proposed third floor addition with walk-out deck adds 270sf
- Zoned RSA5 allows 38ft max height, roof deck with 5ft setback from front, rear yard = 9ft min or 20% of lot depth.
- Philadelphia building code = 2018 IRC
- Phius performance and certification

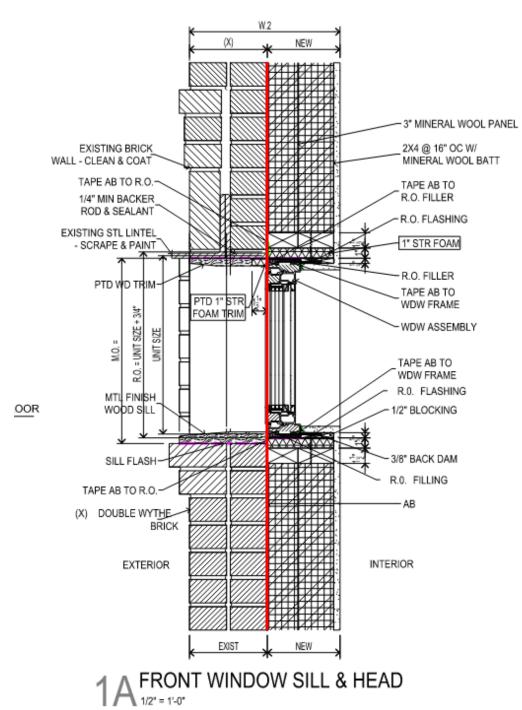


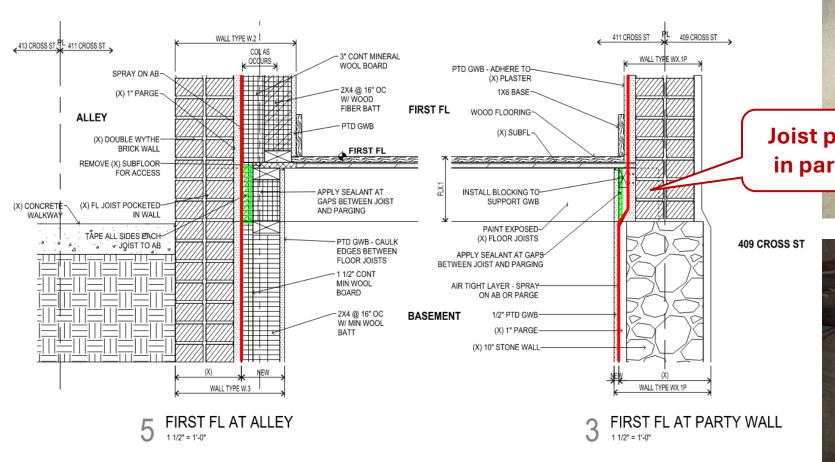

Rear Front Party Wall

PROJECT GOALS

- Foam-free construction
- All electric equipment with no combustion appliances
- Continuous HEPA filtered fresh air through an ERV system
- Fire-safe construction in response to adjacent fire-damaged property
- Existing brick finish to remain
- Outswing passive house windows in existing masonry openings
- Wood fiber insulation where possible
- Retain existing basement slab and stair New insulated slab
- Retain masonry and wood structure where possible (reduce embodied carbon)
- Add third floor with walk-out roof deck to provide usable outdoor space.
- Phius certification
- LEED certification
- Outreach and education

CONTINUOUS AIR BARRIER




Butcher's Alley

Phius REVIVE 2024 Certification

Phius REVIVE 2021 Feasibility Study 9-18-24

WUFI Passive energy model Phius CORE 2021 Performance

Phius REVIVE 2024 Feasibility Study 1-22-25

REVIVEcalc energy model 2021 IECC Performance

Phius 2021 Standard Performance Requirements

Passive Conservation Criteria (Climate Specific)

Annual Heating Demand kBTU/ft²yr

Annual Cooling Demand kBTU/ft²yr

Peak Heating Load BTU/ft²yr

Peak Cooling Load BTU/ft²yr

Airtightness Requirements (per sf of gross enclosure surface area)

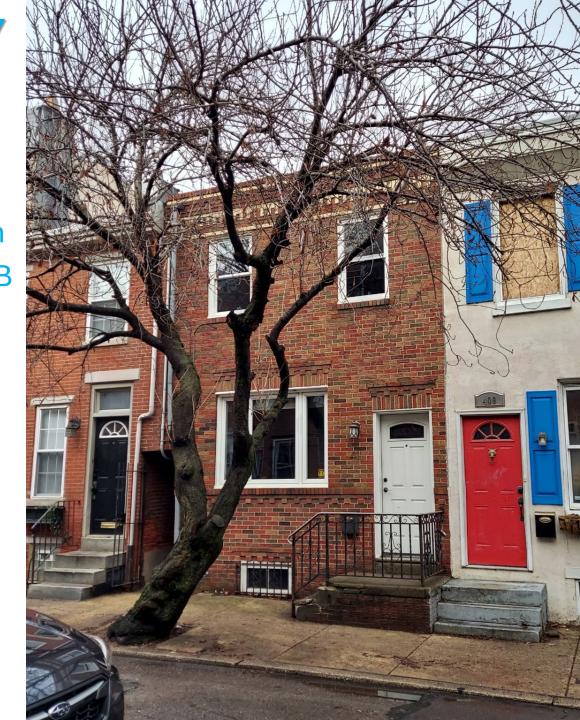
 $.060 \, \text{CMF}_{50}/\text{ft}^2 + .110 \, \text{CMF}_{75}/\text{ft}^2$

Active Conservation Requirements

Net Source Energy Demand (renewable energy)

Lighting, Appliance & Equipment Efficiencies

Phius REVIVE 2024 7 Key Requirements


- 1. Quality assurance / commissioning
- 2. Existing building assessment
- 3. End direct emissions (electrify ASAP)
- 4. Summer and winter resilience, with generation / storage
- 5. Repair existing hazards IAQ (site hazards mostly elective)
- **6. Life-cycle calculations for <u>carbon</u> and <u>cost</u> (REVIVEcalc / ADORB) ADORB = \underline{A}nnualized \underline{D}ecarbonization \underline{O}f \underline{R}etrofitted \underline{B}uildings = PV/N**
- 7. Report project data cost and post-retrofit measure energy performance

Phius REVIVE 2024 FEASIBILITY STUDY

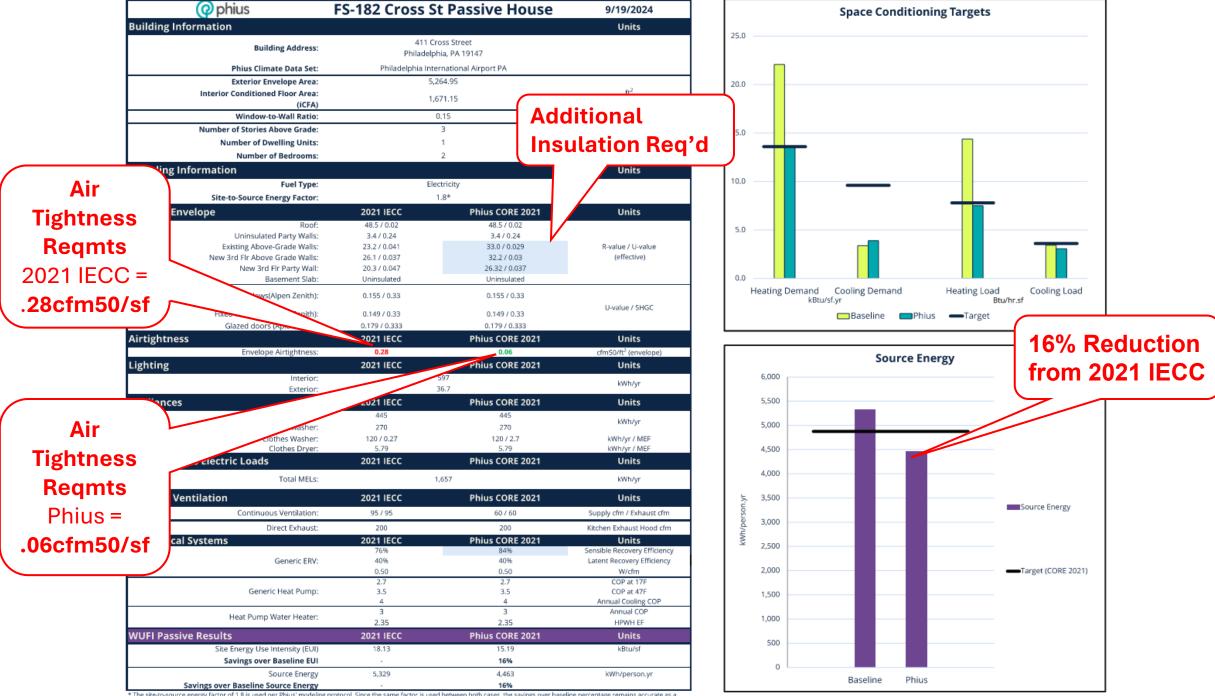
 $ADORB = \underline{A}$ nnualized \underline{D} ecarbonization \underline{O} f \underline{R} etrofitted \underline{B} uildings = PV/N, N=70 years

Retaining masonry walls is a major embodied carbon savings, although the embodied carbon savings are not directly measured in the ADORB model, UNLESS the REVIVEcalc analysis includes these cases:

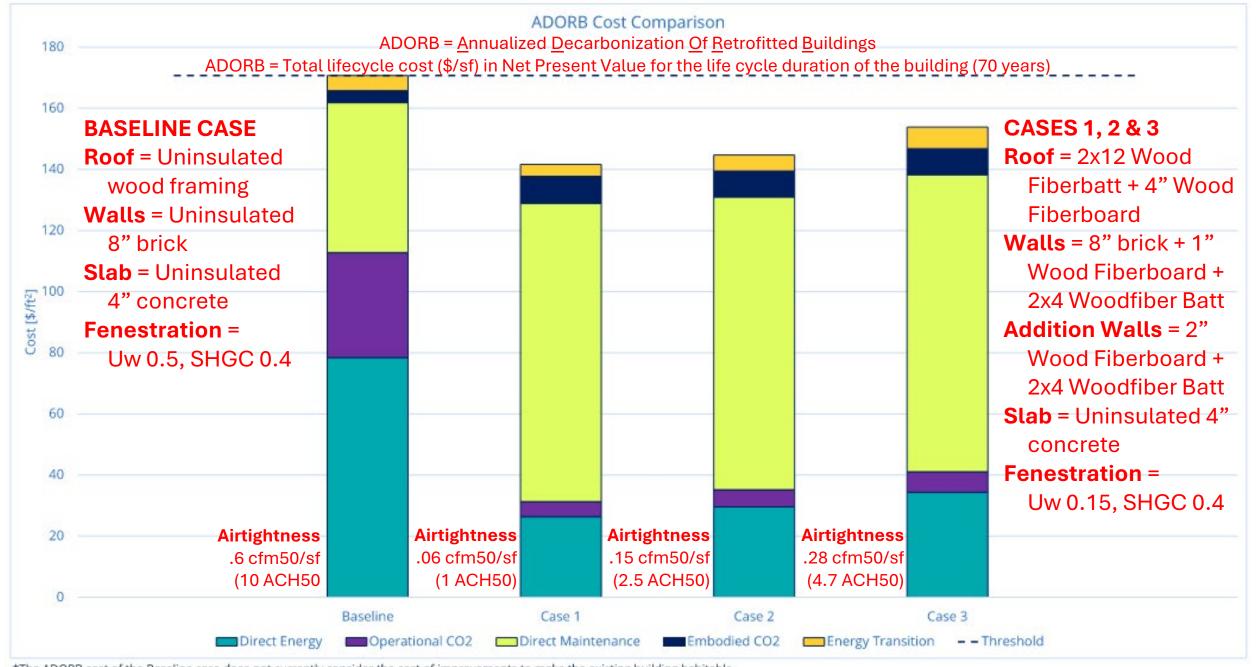
- a. Rewild site
- b. Retrofit to building code compliance
- c. Retrofit to Phius REVIVE standard
- d. Demolish and rebuild with low-carbon construction

Decarbonization: ADORB

Annualized Decarbonization of Retrofitted Buildings Cost Metric = Sum of these annualized costs:

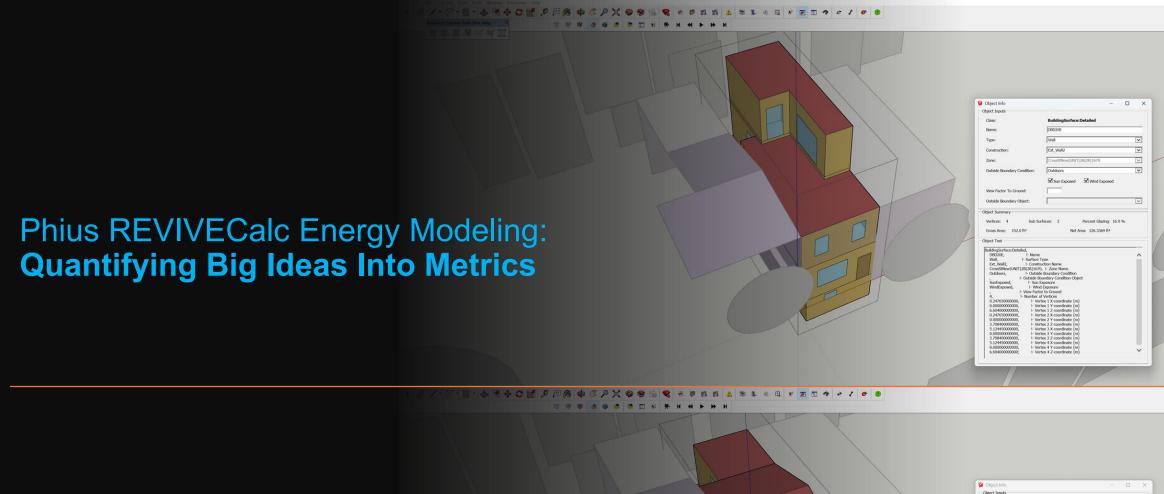

- Direct energy cost. e.g. site kWh * \$ / kWh = \$
- Direct building retrofit measures cost (material & labor)
 including building-level electrification cost. e.g. ft3 of stuff * \$ / ft3 = \$
- Cost of carbon -- upfront/embodied. CO2e kg * \$0.25/kg = \$
- Cost of carbon operating. CO2e kg * \$0.25/kg = \$
- Energy system transition cost. Ex. new solar + storage. \$/W * W = \$

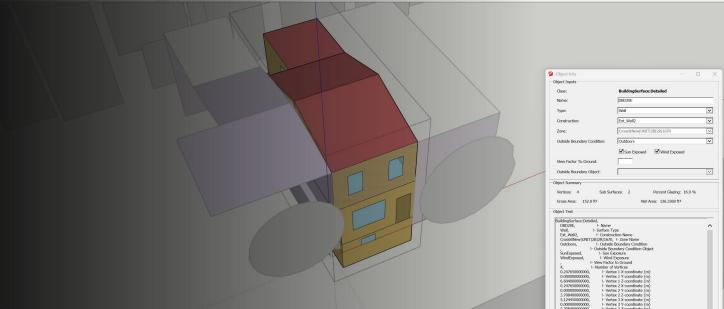
Criterion – Proposed cost is no greater than Baseline (existing) cost

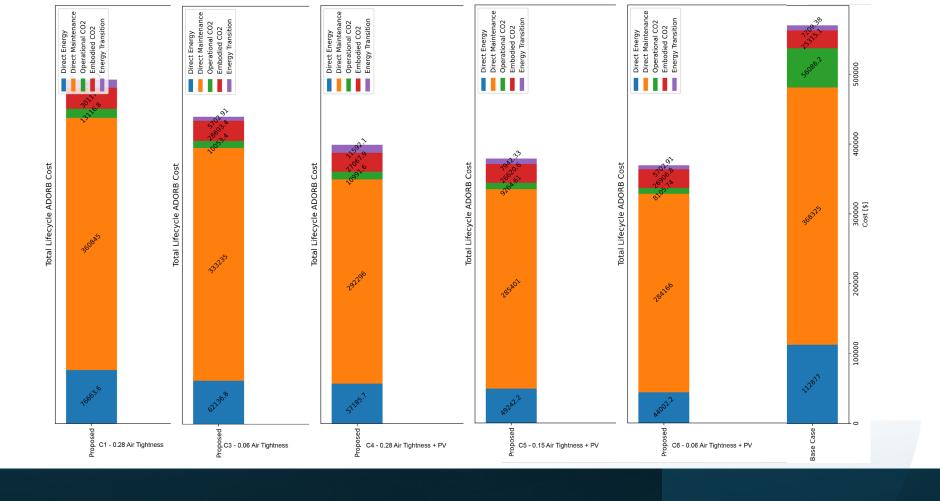

Plus additional decarbonization effort

- Electrification, renewable sources
- Embodied carbon

"FULL COST ACCOUNTING"


^{*} The site-to-source energy factor of 1.8 is used per Phius' modeling protocol. Since the same factor is used between both cases, the savings over baseline percentage remains accurate as a relative calculation.




^{*}The ADORB cost of the Baseline case does not currently consider the cost of improvements to make the existing building habitable.

^{*}The ADORB cost of the Baseline case does not currently consider the cost of improvements to make the existing building habitable.

Why does energy modeling matter?

We are working towards a comfortable indoor environment which uses less carbon over a long period of time as compared to if we did not retrofit the building.

How do we model energy?

The proposed retrofits use healthy, low-embodied carbon materials, and operate on electrified systems.

To understand if we as designers are doing this, we need to:

Enclosure:

Quantify how well the materials we use resist thermal heat transfer through conduction, radiation and convection. We look at materials' conductivity values and specific heat to understand the thermal movement in the building.

Building Systems:

Quantify heat and cooling systems' efficiencies, and the latent and sensible heat recovery of the energy recovery ventilator.

Loads:

Input occupancy, lighting and plug loads and set temperatures. Much of this in REVIVECalc is handled with the EnergyPlus base file that PHIUS has created.

How is it interesting?

Admittedly, looking at numbers can be inaccessible.

The energy model enables us to tweak our inputs on materials, building systems and air tightness and see how this affects the EUI (kBtu / sf*year), carbon emissions, and resiliency.

What's new about ReviveCalc?

Figure 1 - Direct GHG Emissions Factors for the U.S. and Canada

		CO _{2eq} Emissions								
Fuel Type	United States		Canada (g/L) By Province							
	(kg/MBtu)	(kg/MBtu)								
Natural Gas	53.11									
Propane	61.95	64.37	1,544							
Fuel Oil (No. 1)	73.49	75.10	2,762							
Fuel Oil (No. 2)	74.2	75.10	2,762							
Fuel Oil (No. 4)	75.28	75.10	2,762							
Fuel Oil (No. 5,6)	74.26	78.81	3,175							
Diesel Oil	75.16	73.98	2,689							
Kerosene	75.44	71.93	2,569							
Coal (anthracite)	104.42	122.43	-							
Coal (bituminous)	94.01	100.50	-							
Coke	114.40	116.34	-							

Carbon Quantification of Materials and Operation Over Time:

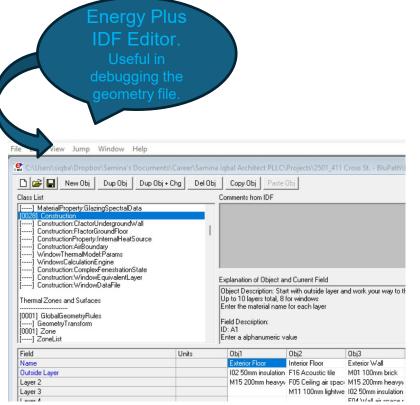
REVIVECalc quantifies the amount of carbon a building will use over 70 years. As designers, we need to come up with a construction cost, which includes labor. Currently, the model is using this number to extrapolate carbon costs, although there is an additional input of CO2_per_area (kg/sm).

Energy Sources – Carbon Quantification:

The energy costs and supply are modeled, and the projected decarbonization of electricity is modeled over 70 years. This gives us an idea of how the building's consumption of energy over 70 years (operational carbon) stacks against other options, and takes into account the decarbonization of the electrical grid.

Dynamic Heat Load Calculation:

The calculation is a dynamic heat load calculation based on hourly data for a one year, captured in EPW or Energy Plus Weather data files and TMY files for Typical Meteorological Year based on location (NREL). (WUFI is a static calculation that considers average monthly temperatures.)

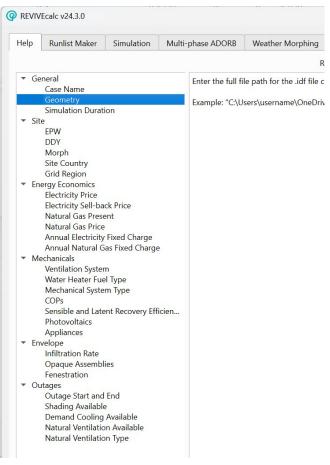

Extreme Weather Conditions and Resiliency, Survivability:

Weather data files are modified for extreme weather conditions. REVIVECalc considers the building performance during extreme conditions for one week in the summer and one week in the winter, and the building must be survivable.

Thermal Bridges:

Thermal bridges are added into one total value. Hygrothermal modeling is not part of the calculation.

How is REVIVECalc working?


Uses EnergyPlus:

Phius REVIVE Standard uses the DOE EnergyPlus 9.5 software as the background engine for the heating and cooling load calculations.

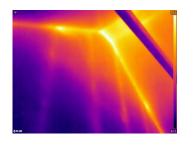
Phius REVIVECalc is a new software layer on top the EnergyPlus engine:

REVIVECalc is new software written by Phius in Python and uses the Energy Plus results while doing more calculations and providing an interface to build the cases and understand results.

The help videos are essential! https://vimeo.com/user/129352609/folder/19374392?isPrivate=false

Takeaways for the Philly rowhome:

Airtightness is Crucial:

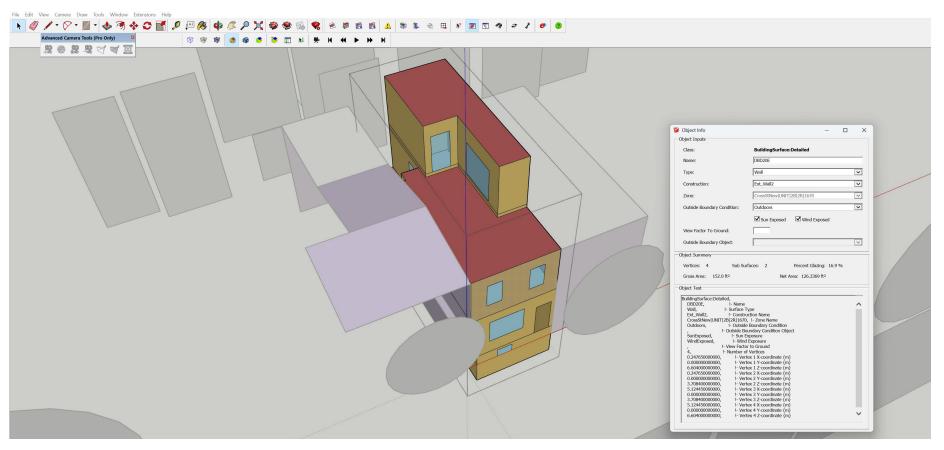

By making a tighter envelope, the resiliency, EUI and carbon costs are improved, and winter survivability is made possible.

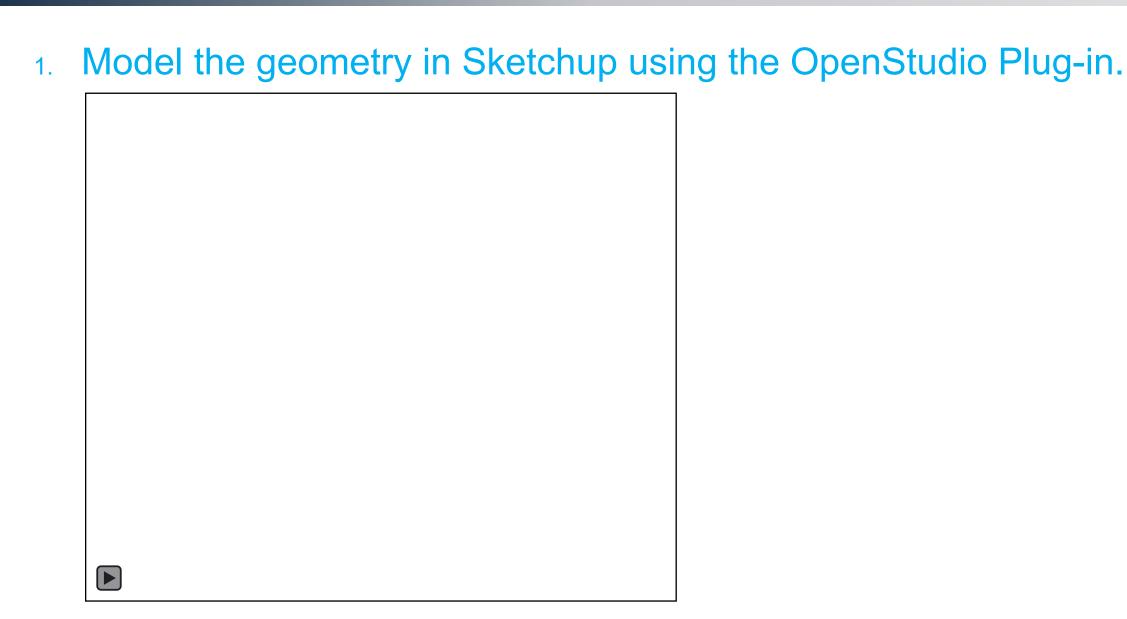
Battery-Powered Demand Cooling is Required for Summer Survivability:

Relying only on natural ventilation is not enough to prevent deadly days, which must be 0.

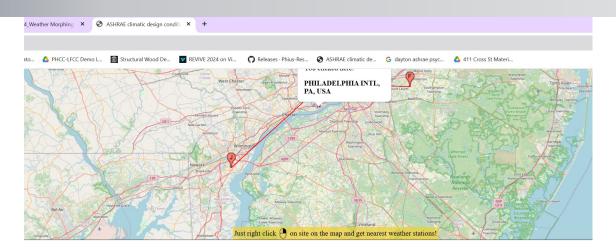
Changes in Floor Area Must be Considered True Comparison:

Cost per unit of conditioned floor area - (based on GSF, this is \$368,883.20 / 1587 sf = 232.44 \$/sf for .06 air infiltration with PV, and \$569,812.67 / 1441 sf = 395.43 for the existing





Result Review Top Cases from Runlist:	Winter Survivabilit SET Hour must be le than 216	y – Sur N ss	Summer vivability – o Deadly Days ermitted	ability – eadly ys – □					
Case Name	SET hours	Deadly Days	EUI	First Cost	Total ADORB Cost				
1 C6-ProposedDesign_06Airtightness_PV	49.66	0	16.74	110224.47	368883.20				
2 C5-ProposedDesign_15Airtightness_PV	209.2	0	18.55	107827.11	378470.85				
3 C3-ProposedDesign_06Airtightness	49.66	0	16.74	112904.63	439821.67				
4 C2-ProposedDesign_15Airtightness	209.2	0	18.55	112117.67	458841.51				
5 C4-ProposedDesign_28Airtightness_PV	404.33	0	21.2	109186.24	399133.38				


1. Model the geometry in Sketchup using the OpenStudio Plug-in.

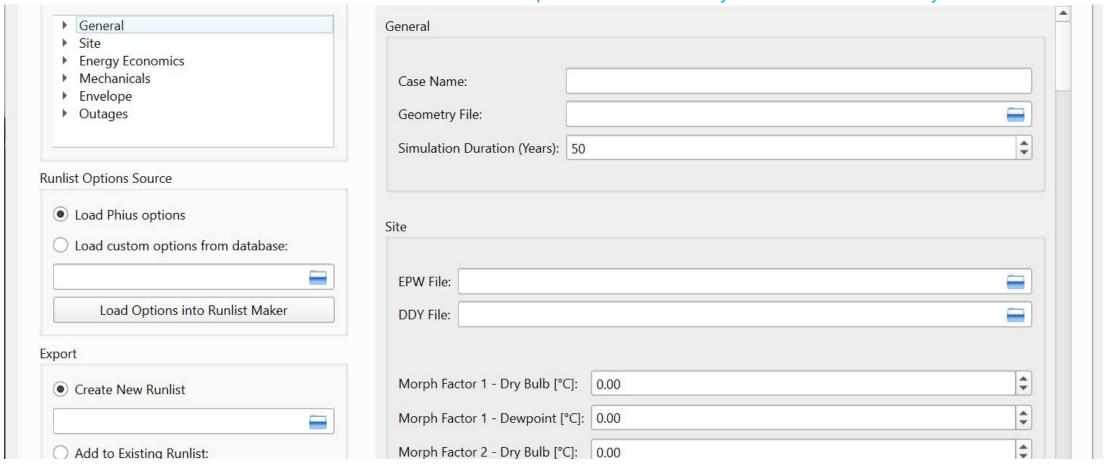
• Associate types to each component (Ext_Wall1, etc.). These types are parameters for the model. This parameterization allows for quick changes of the actual assembly types to be made in the Run List later, before simulation.

- 2. Set up the weather data.
 - The Energy Plus Weather (EPW) file is a compilation of the most average months over 30 years. ReviveCalc takes into account the statistical extreme temperature weeks for summer and winter to check for resilience and survivability.
 - This is done in the Weather Morphing Tab, and then the EPW file is modified.

2021 ASHI	RAE Handb	ook - Found	amentals (S	I)	PHILA	DELPHIA	. INTL, PA,	USA (WM	O: 724080)						
Lat:39	0.873N	Long:75	5.227W	Elev:3		101.29		zone:-5.00	_ ′		:94-19	WBAN	V:13739	Climate	zone:4A
Annual He	ating, Humi	dification, a	nd Ventilation	on Design	Conditions										
				Humidification DP/MCDB and HR					C	oldest mont	h WS/MCD	В	MCWS/	PCWD to	
Coldest	Heating DB			99.6%	% 99%		99%		0.4	0.4%		%	99.6% DB		WSF
Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	
1	-10.1	-7.9	-20.7	0.6	-8.4	-18.3	0.7	-6.2	12.8	1.1	11.8	1.5	5.6	290	0.509
Annual Co	oling, Dehu	midification.	, and Enthal	lpy Design	Conditions										
Hottest	Hottest			Cooling I	DB/MCWB]	Evaporation	WB/MCDI	3			PCWD to
Month	Month	0.4	1%	1	%	2	.%	0.4	4%	1	%	2	%	0.49	6 DB
Wolth	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
7	9.0	34.1	23.9	32.7	23.3	31.3	22.5	25.6	31.3	24.8	29.9	24.2	28.7	5.3	220
		D	ehumidifica	ation DP/M	CDB and H	R					Enthalpy	/MCDB			Г.
	0.4%			1% 2%				0.4%				2	%	Extreme Max WB	
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	Max WD
24.0	18.9	28.1	23.3	18.1	27.3	22.7	17.4	26.8	78.5	31.4	75.2	29.8	72.5	28.9	30.2
Extreme A	nnual Desig	n Conditions	5												
Evt	eme Annual	We		Ex	treme Annu	al Tempera	ture		n-Y	ear Return	Period Valu	es of Extren	ne Tempera	ture	
EXII	eme Annuai	WS		Mean Standard deviation		n=5			0 years n=20 y				years		
1%	2.5%	5%		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
11.1	9.5	8.5	DB	-13.0	36.4	3.0	1.6	-15.1	37.5	-16.8	38.5	-18.5	39.4	-20.7	40.6
			WB	-14.3	27.0	2.7	1.2	-16.2	27.8	-17.8	28.5	-19.4	29.1	-21.4	30.0
Monthly C	limatic Desi	gn Condition	ns												
			Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		DBAvg	13.8	1.0	2.3	6.7	12.8	18.1	23.2	26.1	25.1	21.4	14.9	8.8	4.0
		DBStd	9.70	5.53	5.07	4.96	4.54	4.07	3.42	2.71	2.68	3.49	4.25	4.51	4.78
т		HDD10.0	929	284	219	128	21	0	0	0	0	0	7	75	196
	ratures, Days and	HDD18.3	2450	538	448	363	174	56	4	0	0	12	123	287	446
	-Hours	CDD10.0	2298	4	4	24	106	251	397	498	468	341	158	38	9
8		CDD18.3	779	0	0	1	9	48	151	239	210	103	17	1	0
		CDH23.3	6787	0	0	8	98	423	1308	2360	1824	673	91	1	0
		CDH26.7	2484	0	0	1	27	131	473	989	664	186	14	0	0

- Input materials using roughness, thickness (m), conductivity (W/mk), density (kg/m3), and specific heat capacity (J/kgK).
 - Be careful of units if using material specifications that have R values for total thicknesses!
 - Specific heat is often not published. Use ASHRAE tables, or Matweb.com.
 - Get a feel for the numbers! This will help you notice errors!

1	NAME	ROUGHNESS	THICKNESS [m]	CONDUCTIVITY [W/mK]	DENSITY [kg/m3]	SPECIFIC HEAT CAPACITY [J/kgK]
41	39 3in Wood Fiberboard	MediumRough	0.0762	0.0481	320	1880
42	40 0.5in gypsum board	MediumSmooth	0.0127	0.16	800	1090
43	41 FG 5.5in	MediumRough	0.1397	0.0438	64	960
44	42 0.625in gypsum board	MediumSmooth	0.0159	0.16	800	1090
45	43 FG 3.5in	MediumRough	0.089	0.0438	64	960
46	44 MWBoard 1.5 in	MediumRough	0.038	0.036	60	850
47	45 MWBatt 3.5in	MediumRough	0.089	0.04	60	850
48	46 4in Wood Fiberboard	MediumRough	0.102	0.0481	320	1880
49	47 11.25in Woodfibre batts	MediumRough	0.286	0.04	300	1500
50	48 XPS 3in	MediumSmooth	0.0762	0.0288	40	1500
51	49 2in Wood Fiberboard	MediumRough	0.0508	0.0481	320	1880
52	50 1in Wood Fiberboard	MediumRough	0.254	0.0481	320	1880
53	51 GreenFiber DP Cellulose 4in	MediumSmooth	0.1016	0.038978703	32.04	900
54	52 TimberHP TimberBatt 11.25in	MediumRough	0.28575	0.0360553	72.08325	2100
55	53 ACFoam II Polyiso 2in	MediumSmooth	0.0508	0.024444271	32.04	900
56	54 ACFoam II Polyiso 1/2 in	MediumSmooth	0.0127	0.024444271	32.04	900
57	54 ACFoam II Polyiso 4in	MediumSmooth	0.1016	0.024444271	32.04	900
58	54 TimberHP TimberBatt 7.25in	MediumRough	0.18415	0.0360553	72.08325	2100
59	55 Insultech R-Tech X EPS 15psi 3in	MediumSmooth	0.0762	0.020603029	21.624975	1300
60	56 Low-GWP CC SPF 7.25in	Rough	0.18415	0.021525552	32.037	920
61	57 Low-GWP CC SPF 2in	Rough	0.0508	0.021525552	32.037	920
62	58 Mineral Wool Panel 3in	MediumRough	0.0762	0.033539814	128	850


4. Create construction assemblies referencing the materials.

- Create descriptive names! Carefully reference material names!
- Determine construction costs contractor estimates, adding material costs, and https://remdb.nrel.gov
- Lifetime of the assembly must be estimated. This will affect the Present Value Direct Maintenance Cost in the ADORB calculation.
- Labor is included as a fraction of the total cost.

Name		O2e_Per C	Cost_PerOutside_L.Layer_2 Layer_			yer_6 Layer_7	Layer_8	Layer_9	Layer_10	Air_Sealing Ba	ttery_C(PV_C	st_[Mechanic: Appliance_L	itetime La	abor_Fracti
69 CS_Ext_Roof2	Roof		Plywood (ER-117.25 i 0.625								0	0.3		
70 CS_Ext_floor1	Exterior Floo	or	M11 100mm lightweight con								0	0.3		
71 CS_Ext_floor2	Exterior Floo	r	3in Wood F 0.5in gyps FG 3.5	in 0.625in §	gypsum board								0	0.3
72 ExistingWindows	Window	205.2	100 ExistingWindows										0	0.5
73 AlpenFixed	Window	205.2	AlpenFixed										30	0.5
74 AlpenOperable	Window	205.2	AlpenOperable										30	0.5
75 CS_Ext_Door1	Exterior Do	66.6	250 G05 25mm wood										30	0.3
76 CS_Ext_wall5.1	Exterior Wal	l	8in Old bri MWBoard 0.625	n gypsum boa	ard								0	0.3
77 WINDOW_U-0.5 g=0.4	Window	205.2	100 U-0.5 g=0.4										30	0.5
78 WINDOW_U-0.4 g=0.4	Window	205.2	139.94 U-0.4 g=0.4										30	0.5
79 WINDOW_U-0.3 g=0.4	Window	205.2	258.34 U-0.3 g=0.4										30	0.5
30 WINDOW_U-0.2 g=0.4	Window	228.6	357.63 U-0.2 g=0.4										30	0.5
31 WINDOW_U-0.1 g=0.4	Window	228.6	603.36 U-0.1 g=0.4										30	0.5
32 WINDOW_U-0.5 g=0.2	Window	205.2	100 U-0.5 g=0.2										30	0.5
83 WINDOW_U-0.4 g=0.2	Window	205.2	139.94 U-0.4 g=0.2										30	0.5
84 WINDOW_U-0.3 g=0.2	Window	205.2	258.34 U-0.3 g=0.2										30	0.5
85 WINDOW_U-0.2 g=0.2	Window	228.6	357.63 U-0.2 g=0.2										30	0.5
86 WINDOW_U-0.1 g=0.2	Window	228.6	603.36 U-0.1 g=0.2										30	0.5
87 WINDOW_U-1.0 g=0.5	Window	180	100 U-1.0 g=0.5										30	0.5
88 WINDOW_U-0.15 g=0.4	Window	228.6	420 U-0.15 g=0.4										30	0.5
89 WINDOW_U-0.15 g=0.2	Window	228.6	420 U-0.15 g=0.2										30	0.5
90 CS_Ext_Roof_R.1	Roof	276.2	60 Plywood (E 4in Wood F Plywo	od (E TimberH	P 0.5in gypsum	board							70	0.5
91 CS_Ext_Roof_R.2	Roof	142.08	60 Plywood (E 4in Wood F Plywo	od (E TimberH	P 0.5in gypsum	board							70	0.5
92 CS_Ext_Roof_RX.1	Roof	241.32	60 Plywood (ETimberHP Low-G	WP 0.5in gyp	osum board								70	0.5
93 CS_Ext_Wall_W.1	Exterior W	154.56	60 HardiePlar F04 Wall a 3in W	ood F Plywood	(ETimberHP 0.6	625in gypsum boar	rd						70	0.5
94 CS_Ext_Wall_W.1A	Exterior W	63	60 HardiePlar F04 Wall a 3in W	od F Plywood	(E TimberHP 0.6	325in gypsum boar	rd						70	0.5

5. Create the simulation cases in the Run List.

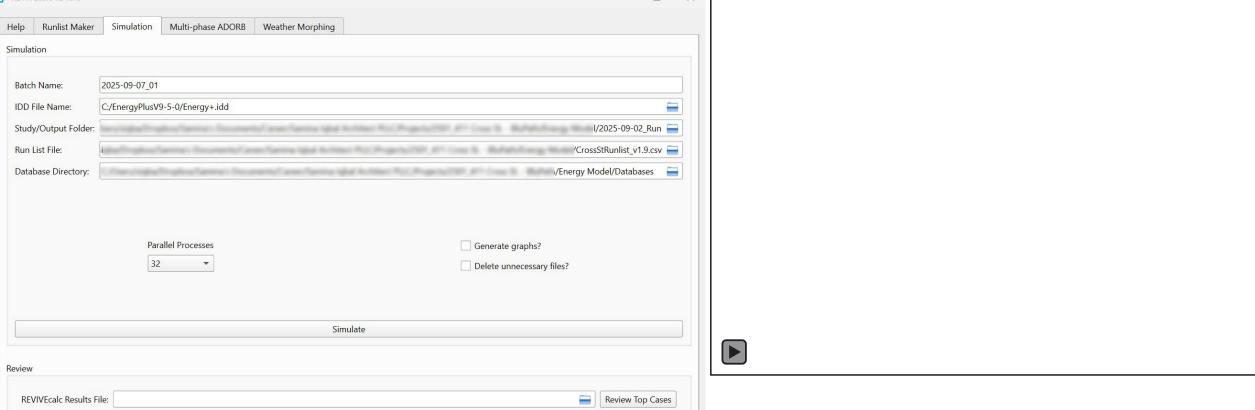
- Mechanical system information, PV information, and energy source is input here.
- Construction assemblies are associated to model parameters here. They can be different for every case.

REVIVECalc: Order of Operations

5. The Run List is also an csv file!

A B	C D	E	F	G	н		K I		M N O	D	0		D	C	T		V \/	Y	V		7 ^	۸	8 A	C	AD AF	ΛF	۸G	AH	ΛΙ	٨١	AK
CASE_NANGEOME			-	1orphFact	MorphFact M	orphFactENVELO	PE GRID_REG ENVE	LOPE PER	RF_CAR NON_PERFELEC_P	RICSELLE	BACK NATURA	L_GA	AS_PRICIA	NNUAL_CA	ANNUAL_EMECH	, H_SYSW	ATER_HEVENT_SY	S' HEATIN	IG_(COOLING	G_SENS	SIBLE_LATE	NT_RIPV_SI	ZE_[VPV_T	ILT PV	_AZIMU APPLIANC IN	IFILTRATIC	HI_VALU O		perable_C	perable_	
BASE-Base C:/Users	s/s 70 C:/Users/s	C:/Users/	-3.53	1.79	8.48	2.32 USA	RFCEc	0.4	0.17	79	0	1	1.373	0	200 GasFi	urnac Na	aturalGa Exhaust		0.7	3	0	0	1	0	0 FRIDGE 36	0.6	0	48	0	39	
C1-Propos C:/Users	s/s 70 C:/Users/s	C:/Users/	-3.53	1.79	8.48	2.32 USA	RFCEc	0.4	0.17	79	0	0	1.373	0	200 PTHP	EU	ectricity Balance	d	3.1	4	0.8	0.7	1	0	0 FRIDGE 36	0.22	0	85	0	92	
C2-Propos C:/Users	s/s 70 C:/Users/s	C:/Users/	-3.53	1.79	8.48	2.32 USA	RFCEc	0.4	0.17	79	0	0	1.373	0	200 PTHP	El	ectricity Balance	d	3.1	4	8.0	0.7	1	0	0 FRIDGE 36	0.15	0	85	0	92	
C3-Propos C:/User	s/s 70 C:/Users/s	C:/Users/	·s -3.53	1.79	8.48	2.32 USA	RFCEc	0.4	0.17	79	0	0	1.373	0	200 PTHP	El	ectricity Balance	d	3.1	4	0.8	0.7	1	0	0 FRIDGE 36	0.06	0	85	0	92	
C4-Propos C:/Users	s/s 70 C:/Users/s	C:/Users/	-3.53	1.79	8.48	2.32 USA	RFCEc	0.4	0.17	79	0	0	1.373	0	200 PTHP	El	ectricity Balance	d	3.1	4	0.8	0.7	3300	30	180 FRIDGE 36	0.22	0	85	0	92	
C5-Propos C:/User	s/s 70 C:/Users/s	C:/Users/	-3.53	1.79	8.48	2.32 USA	RFCEc	0.4	0.17	79	0	0	1.373	0	200 PTHP	El	ectricity Balance	d	3.1	4	8.0	0.7	3300	30	180 FRIDGE 36	0.15	0	85	0	92	
C6-Propos C:/Users	s/s 70 C:/Users/s	C:/Users/	-3.53	1.79	8.48	2.32 USA	RFCEc	0.4	0.17	79	0	0	1.373	0	200 PTHP	El	ectricity Balance	d	3.1	4	0.8	0.7	3300	30	180 FRIDGE 36	0.06	0	85	0	92	

Wall types changed for the base case and the proposed cases


AK	AL	AM	AN	AO	AP	AQ	AR	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ	BK		M	BN	ВО	BP	BQ	BR
Operable	FOUNDAT F	OUNDAT	FOUNDAT F	FOUNDAT E	XT_WIND EX	XT_WALL	EXT_ROOF	EXT_FLOC	EXT_DOOR	FINT_FLOO	FOUNDAT I	FOUNDAT I	FOUNDAT	FOUNDAT	EXT_WIND	EXT_WALL	EXT_ROOF	FEXT_FLOO	EXT_DOOF	INT_FLOOI	FOUNDAT	FOUNDAT	FOUNDAT I	FOUNDAT E	EXT_WIND	EXT_WALL EXT	LOOF EXT	FLOO EXT	T_DOOF IN	IT_FLOOI 1ST	_OUTA OU	TAGE_10	UTAGE_10U
8	Basement 0).5in gypsı	0	0.01 W	INDOW_C	S_Ext_wa	CS_Ext_Ro	CS_Ext_flo	o CS_Ext_Do	c CS_Int_Flo	or_FLX.1				WINDOW_	CS_Ext_wal	116	CS_Ext_flo	Exterior Do	or				١	WINDOW_	CS_Ext_wall6				HE	ATING	14-Jan	21-Jan
8	Basement 0	.5in gypsı	72	0.01 W	INDOW_C	S_Ext_Wa	CS_Ext_Ro	CS_Ext_FI	lc AlpenDoor	r CS_Int_Flo	or_FLX.1				WINDOW_	CS_Ext_Wa	ll_W.2	CS_Ext_Flo	AlpenDoor	_HeritageGI	lass			N	WINDOW_	CS_Ext_Wall_V	N.3			HE	ATING	14-Jan	21-Jan
8	Basement 0	.5in gypsı	72	0.01 W	INDOW_C	S_Ext_Wa	CS_Ext_Ro	CS_Ext_FI	lc AlpenDoor	r CS_Int_Flo	or_FLX.1				WINDOW_	CS_Ext_Wa	ll_W.2	CS_Ext_Flo	AlpenDoor	_HeritageGI	lass			١	WINDOW_	CS_Ext_Wall_V	N.3			HE	ATING	14-Jan	21-Jan
8	Basement 0	.5in gypsı	72	0.01 W	INDOW_C	S_Ext_Wa	CS_Ext_Ro	CS_Ext_FI	lc AlpenDoor	r CS_Int_Flo	or_FLX.1				WINDOW_	CS_Ext_Wa	ll_W.2	CS_Ext_Flo	AlpenDoor	_HeritageGI	lass			١	WINDOW_	CS_Ext_Wall_V	N.3			HE	ATING	14-Jan	21-Jan
8	Basement 0	.5in gypsı	72	0.01 W	INDOW_C	S_Ext_Wa	CS_Ext_Ro	CS_Ext_FI	lc AlpenDoor	r CS_Int_Flo	or_FLX.1				WINDOW_	CS_Ext_Wa	ll_W.2	CS_Ext_Flo	AlpenDoor	_HeritageGI	lass			١	WINDOW_	CS_Ext_Wall_V	N.3			HE	ATING	14-Jan	21-Jan
8	Basement 0	.5in gypsı	72	0.01 W	INDOW_C	S_Ext_Wa	CS_Ext_Ro	CS_Ext_FI	lc AlpenDoor	r CS_Int_Flo	or_FLX.1				WINDOW_	CS_Ext_Wa	ll_W.2	CS_Ext_Flo	AlpenDoor	_HeritageGI	lass			١	WINDOW_	CS_Ext_Wall_V	N.3			HE	ATING	14-Jan	21-Jan
8	Basement 0).5in gypsı	72	0.01 W	INDOW C	S Ext Wa	CS Ext Ro	CS Ext FI	lc AlpenDoor	rCS Int Flo	or FLX.1				WINDOW	CS Ext Wa	ll W.2	CS Ext Flo	AlpenDoor	HeritageGl	lass			N.	WINDOW	CS Ext Wall V	N.3			HE	ATING	14-Jan	21-Jan

REVIVECalc: Order of Operations

Run the using the simulation tab in REVIVECalc.

This is where all the parts and pieces are assembled!

Be ready for errors. But celebrate when you work through them all and it runs! REVIVEcalc v24.3.0 Multi-phase ADORB Runlist Maker Simulation Weather Morphing

GREEN
BUILDING
UNITED

Passive House + Living Future Communities Phius REVIVE / Living Future Core

Demonstration Learning Series

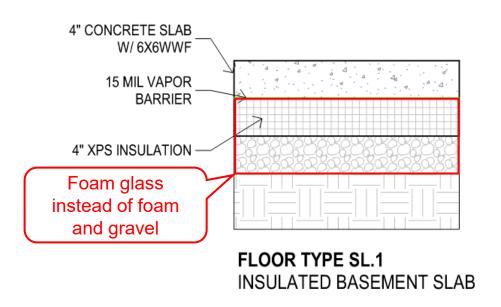
https://greenbuildingunited.org/news/alignment-through-the-language-of-carbon-a-crosswalk-exploration-of-phius-revive-and-living-future-core/

** Wood Fiber **

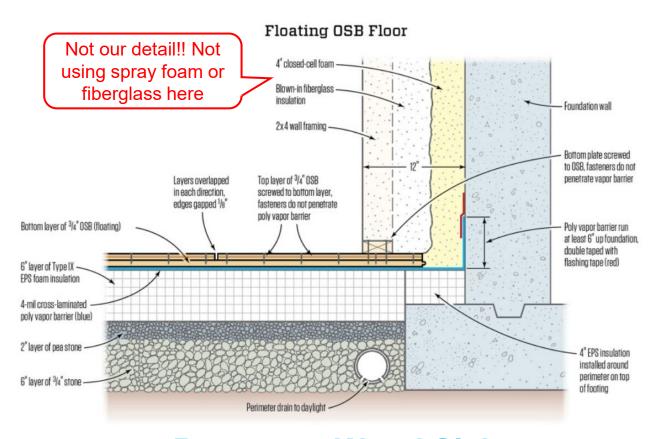
Wool

Fiberglass

Mineral Wool

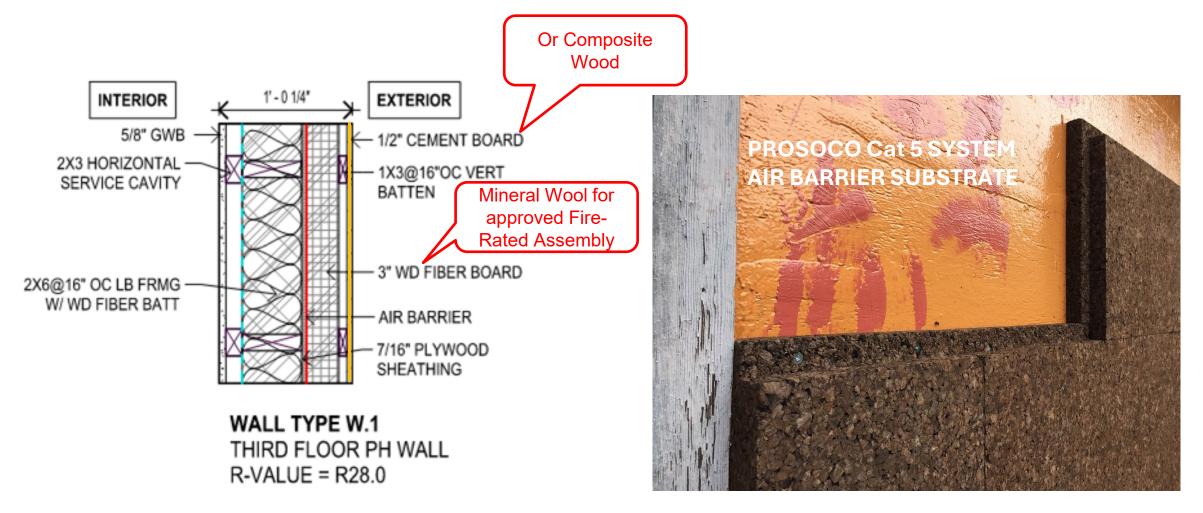


** Cellulose **



** Cork **

** AGRI-BASED INSULATION**



Basement Slab
Replaces Uninsulated Slab
= 529sf

Basement Wood Slab Replaces 529sf Concrete

INSULATED WOOD INSTEAD OF CONCRETE SLAB??

Wood Wall Framing

Vented Rainscreen at Addition = 386sf 1 hr Fire Separation at Prop Line = 313sf

Wood Wall Framing

Unvented Cork Facade at Addition = 386sf Class B Fire Separation at Prop Line = 313sf

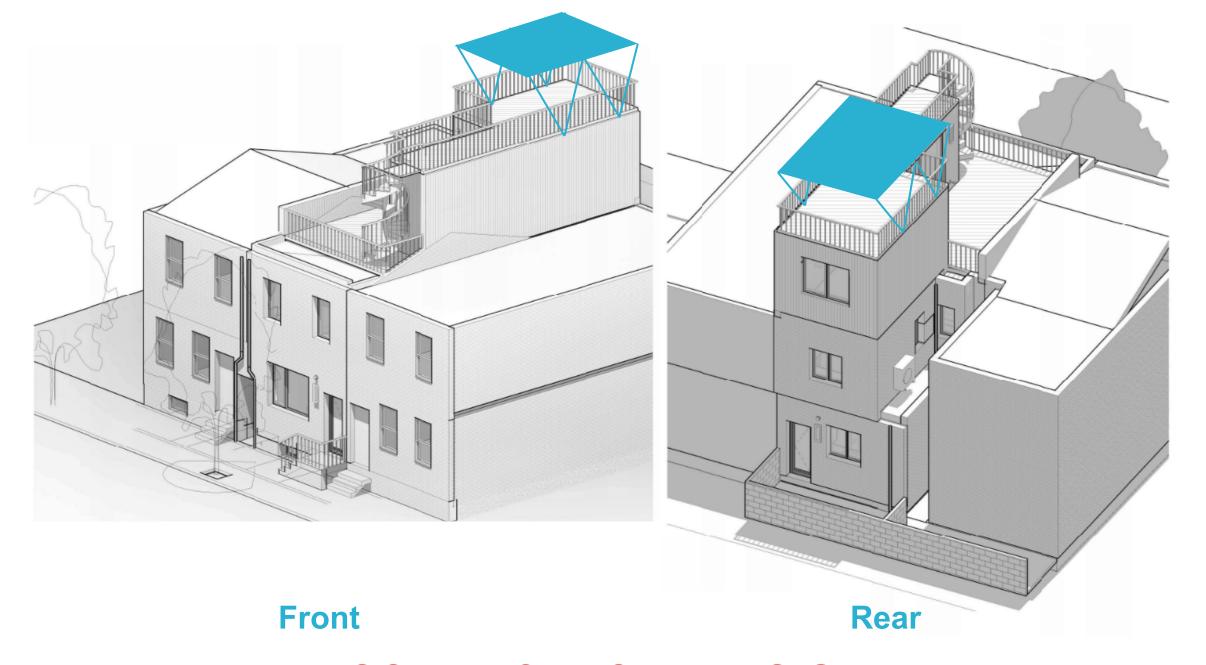
CORK INSTEAD OF CEMENT BOARD ??

DW.1

MW.1 GE JVM7195SK

RANGE.1 GE PB965YP_BP

RANGE.1ALT GE PHS93EYPFS


WD.1 GE PFQ97HSPVDS

REF.1 GE GFE28GBL

SOLAR CANOPY DESIGN

ENERGY BUDGET from CRITICAL LOADS

Estimated Daily Consumption 56 kWh Estimated Daily Solar Production

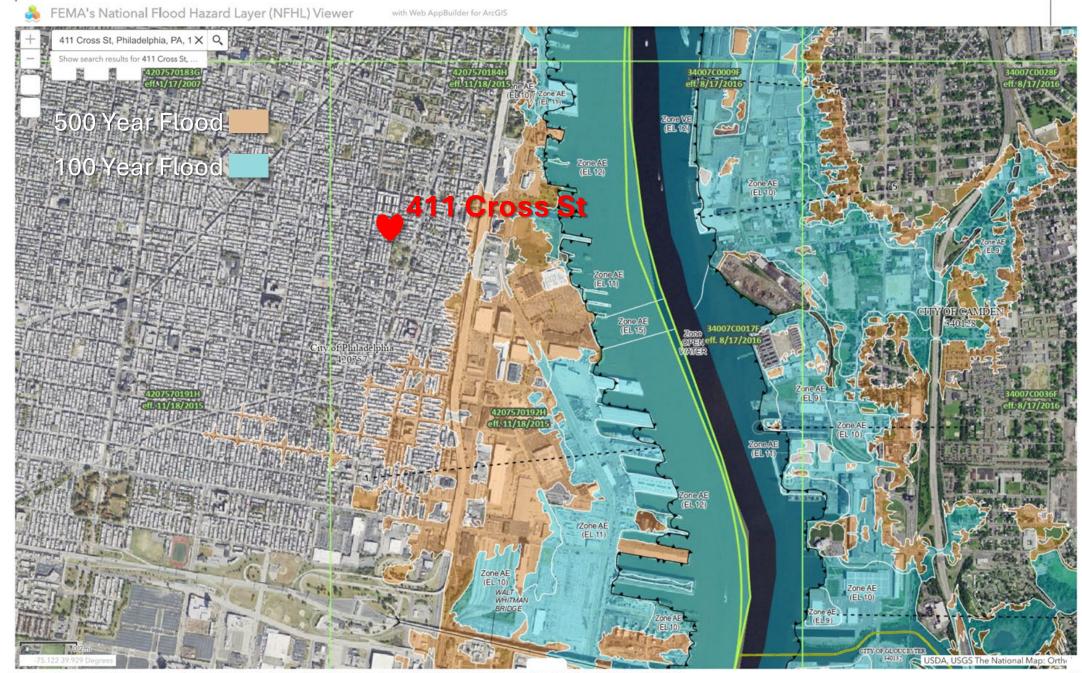
Summer 14 kWh

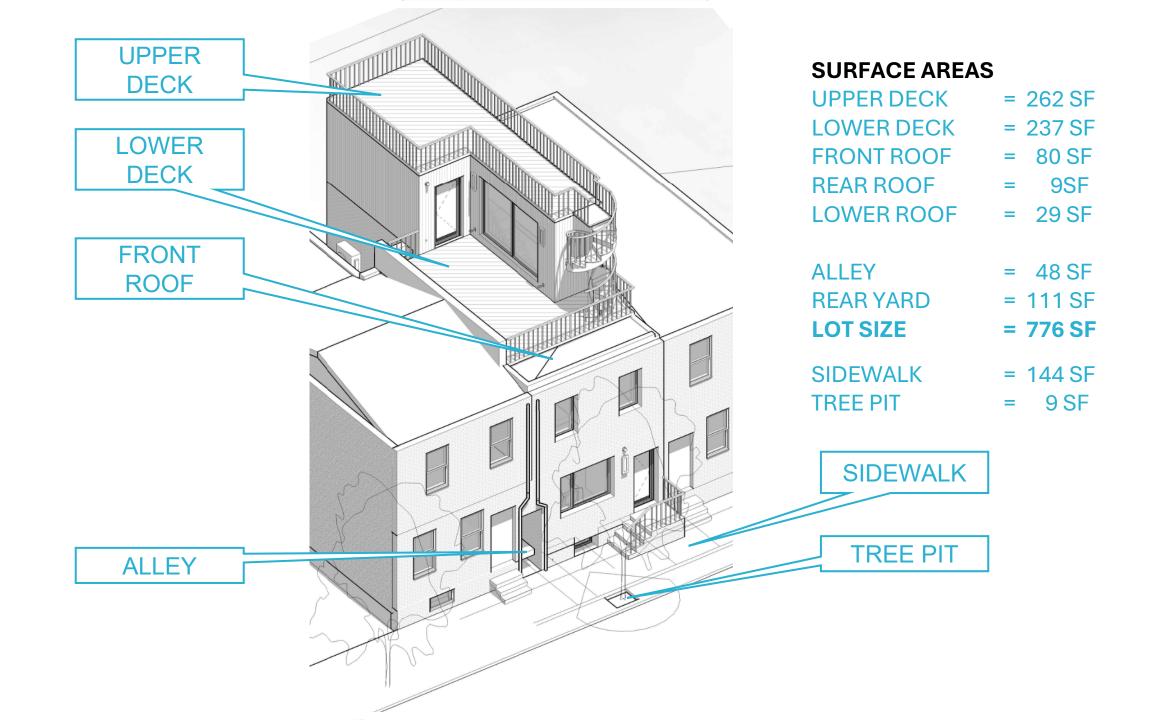
Winter 4 kWh

Need from Battery

Summer 42 kWh

Winter 52 kWh


Total Batteries 2-3 units


Battery Cost (\$11k each) = \$22k - \$33k

How can this project contribute to 'Community Resilience'?

'SMART' ELECTRIC PANEL WITH BATTERY BACKUP

DAILY WATER USE ESTIMATOR

	Numberper	Number of	Gallons per	Gallons	Gallons
Use	Day	Minutes	Minute	per Use	per Day
Bath	0.5			36	18
Shower	1	10	1		10
Teeth Brushing	2			1	2
Hand Washing	10	1	1		10
Dishwasher	0.5			6	3
Hand Dishwashing	1	5		9	9
Laundry	0.25			25	6.25
Drinking Potable per Glass (8 oz)	8			0.06	0.48
Toilets (could be non-potable)	10			1.6	16
TOTAL WATER NEED					74.73
Percent reduction if to ilets use non-potable					21.41%

RAINFALL CALCULATOR

Roof Area		Rainfall Depth	
	614 sf	3 in	1148 gallons
Site Area		Rainfall Depth	
	806 sf	3 in	1507 gallons

PRE-DESIGN WATER USE ESTIMATOR

STRATEGIES

Store and slowly release
Store and reuse
Internal
External
Infiltrate
Green or Purple roof
Tree trench
Right-of-way belongs
to City
Utility conflicts

GREEN INFRASTRUCTURE

Thank You - Paul, Laura, and Samina

www.blupath.us info@blupath.us 267-519-3564

www.siarchitect.com design@siarchitect.com 484-474-0244