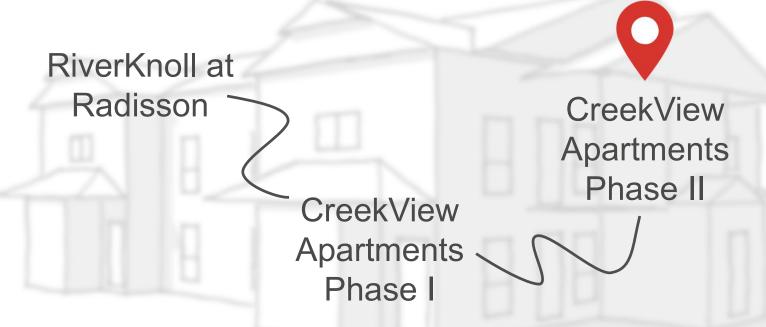


Outline


- Project Overview
- 8-Plex Design
- MEP Overview
- Why Ground Source Heat Pump?
- Carbon Emissions
- PV Comparison Phius vs Code
- Predicting Building Performance
- Building Envelope
- What Could a Future Project Do
- Questions?

Project Overview

The Journey

Project Team

a DiMarco Group company

Phase II

RiverKnoll at Radisson

80-unit 8-Plex project in Baldwinsville, NY 10 buildings – 1, 2, 3 bedrooms Completed in 2015

Funding:

Homes and Community Renewal (HCR) 9% LIHTC NYSERDA Low-rise Residential New Construction Program \$200,000 total incentives, \$2,000/unit with \$500/unit affordable housing adder.

Riverknoll Construction

HERS Index	64			
Carbon Index	128			
Wall	R-21 batt advanced framing			
Windows	U-0.3, SHGC-0.26			
Air Barrier	Taped Tyvek			
Roof	R-38 Batts			
Slab	R-10 4' Depth			
Heating/Cooling	Gas Furnaces, 14 SEER AC			
Ventilation	Exhaust Only			
Hot Water	0.67 EF Gas Storage			
Appliances	Energy Star Appliances			
Lighting	LED/CFL Lighting			

CreekView Apartments Phase I

1st affordable upstate NY Phius certified project

96-unit 8-Plex project in Canandaigua, NY 12 buildings – 1, 2, 3 bedrooms Completed in 2019

Funding:

Homes and Community Renewal (HCR) 9% LIHTC

NYSERDA Low-rise Residential New Construction Program \$78,600 total incentives, \$1,000/unit for the first 50, \$600 for the remaining 46.

CreekView | Construction

HERS Index	46				
Carbon Index	51				
Wall	R-37 Total: R-21 Cavity + R-19ci				
Windows	U-0.15, SHGC-0.33 Casements				
Air Barrier	Fluid applied air barriers				
Roof	R-59-78 Blown in				
Slab	R-15 continuous under slab				
Heating/Cooling	Ductless Mini Splits, 10 HSPF 18 SEER				
Ventilation	Unitary Energy Recovery Ventilation				
Hot Water	1 BR: Instant Gas, 2-3BR: Electric Resistance				
Appliances	Energy Star Appliances				
Lighting	LED Lighting				

CreekView Apartments Phase II

Continuation of prior development project 72-unit 8-Plex project in Canandaigua, NY 9 buildings – 1, 2, 3 bedrooms Under Construction

CreekView II Construction

HERS Index	11			
Carbon Index	20			
Wall	R-37 Total: R-21 Cavity + R-19ci			
Windows	U-0.15, SHGC-0.33 Casements			
Air Barrier	Fluid applied air barriers			
Roof	R-59-78 Blown in			
Slab	R-15 continuous under slab			
Heating/Cooling	Ground Source Heat Pumps			
Ventilation	Central Energy Recovery Ventilation			
Hot Water	Ground Source Heat Pumps			
Appliances	Energy Star Appliances			
Lighting	LED Lighting			
Solar	Rooftop PV			
EV Charging	EV Charging			

Funding:

Homes and Community Renewal (HCR) 9% LIHTC NYSERDA:

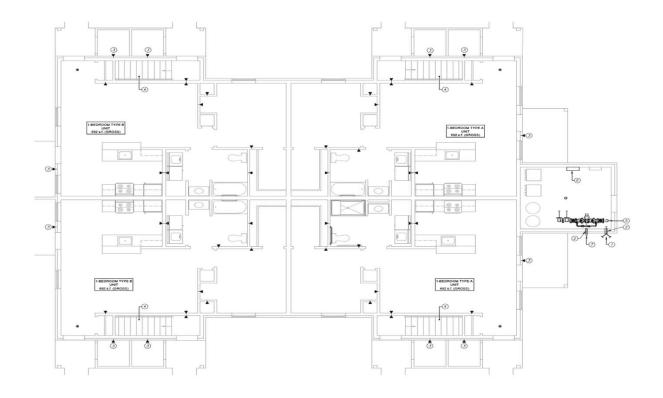
- Low-rise Residential New Construction Program
 - \$288,000 total incentives, \$4,000/unit
- Building of Excellence Demonstration Winner
 - \$1 Million
- Building of Excellence Early Design Support Winner
 - \$150,000

The Importance of Funding

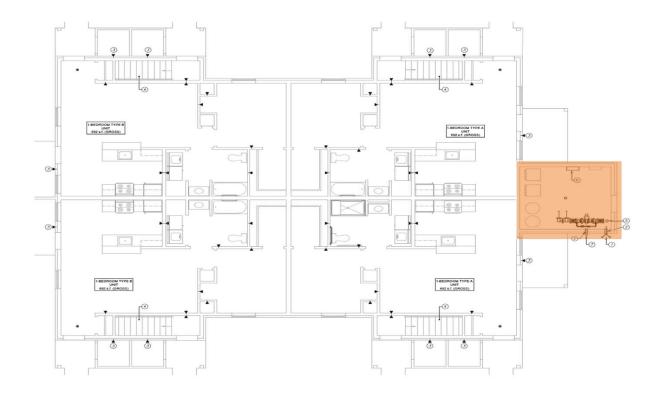
NYSERDA, HCR, CEI, Stretch Code, State Initiatives / Mass Save, Mass Stretch. Mortgage industry. Property Assessed Clean Energy Financing (PACE)

NYSERDA Funding

- Buildings of Excellence (BOE) Demonstration Award
- NYSERDA New Construction Housing Program
- NY-SUN (solar incentives)
- Buildings of Excellence Early Design Support (EDS)
 - Funds early integration of carbon-neutral strategies.
 - Targets the initial design stage for maximum impact.
 - Supports testing of new systems, materials, and tools.



8-Plex Design



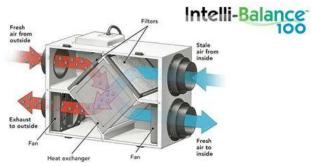
Floor Plans


Floor Plans - Phase II

Property	Riverknoll	CreekView Phase I	CreekView Phase II
Location	Baldwinsville, NY	Canandaigua, NY	Canandaigua, NY
Year Completed	2015	2019	2026
Wall	R 21 total. Batt plus advanced framing	R 37 total. R 21 cavity plus R 19 ci	R 37 total. R 21 cavity plus R 19 ci
Windows	U 0.3, SHGC 0.26. Double hung	U 0.15, SHGC 0.33. Casements	U 0.15, SHGC 0.33. Casements
Air Barrier	Taped Tyvek	Fluid applied air barriers	Fluid applied air barriers
Roof	R 38 batts	R 59 to 78 blown	R 59 to 78 blown cellulose
Slab	R 10 perimeter	R 20 under slab	R 20 under slab
Heating and Cooling	Gas furnaces, SEER AC	Ductless mini splits. 10 HSPF, 18 SEER	GSHP to ducted air handler. 3.3 COP
Ventilation	Exhaust only	Unitary ERV. 77% eff	Shared ERV. 77% eff
Hot Water	0.67 EF gas storage	1 BR gas. 2 to 3 BR electric resistance	Central GSHP. 3.3 COP
Appliances	Energy Star appliances	Energy Star appliances	Energy Star appliances
Lighting	LED and CFL lighting	LED lighting	LED lighting
Solar	-	-	339 kW rooftop PV
EV Charging	-	-	(6) EV stations plus (36) EV capable

RiverKnoll at Radisson: MEP Overview

- Gas Furnaces
 - Fuel-fired air distribution, Natural gas, 96.5 AFUE.
- Electric Air Conditioning
 - 14 SEER
- Gas Domestic Hot Water
 - 80% Gas 40-gallon storage tank
- Bath Fans
 - Broan Intermittent Bath Fan with smart switch

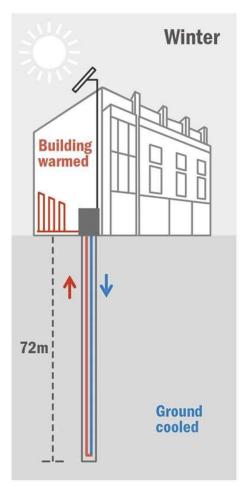


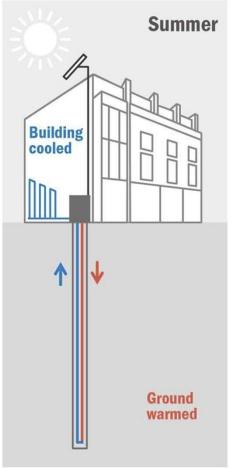
CreekView Apartments Phase I: MEP Overview

- Air Source Heat Pumps
 - 10 HSPF/18 SEER Ductless multi-splits
- Gas/Electric Domestic Hot Water
 - 1 Beds: On-demand gas, 93% Eff
 - 2-3 Beds: Electric resistance 40-gallon storage tank
- ERV Ventilation
 - ~80% SRE
 - Unitary

CreekView Apartments Phase II: MEP Overview

- Ground Source Heat Pump Heating, Cooling, & DHW
 - COP 3.45 water to water geothermal services heating cooling and DHW
- ERV Ventilation
 - ~80% SRE
 - Semi-central
- Solar Power
 - 339 combined kW
- EV Charging
 - 6 EV stations
 - 36 EV capable


Variable-Speed Water-to-Water

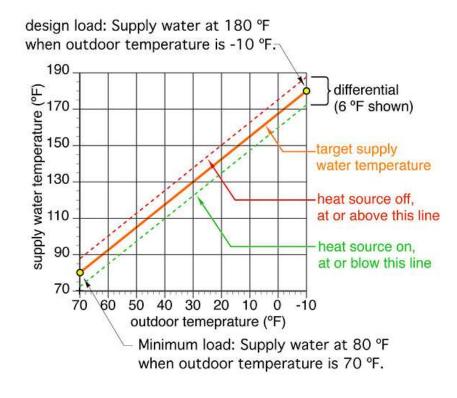


Why Ground Source Heat Pump?

Peak Load Shaving

Graphic provided by GridX. https://www.gridx.ai/de/knowledge/peak-shaving

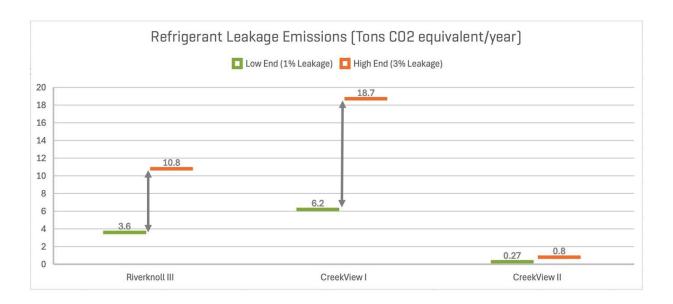
Variable-Speed Water-to-Water
Capacity: 5 tons



Advanced Controls

Outdoor Reset

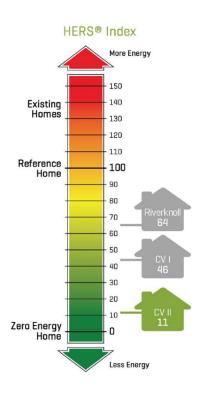
 Links outdoor temperature with indoor heat pump, allowing heat pump to control water temp

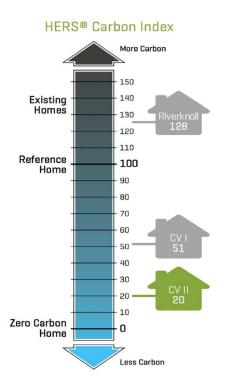


Refrigerant Reduction

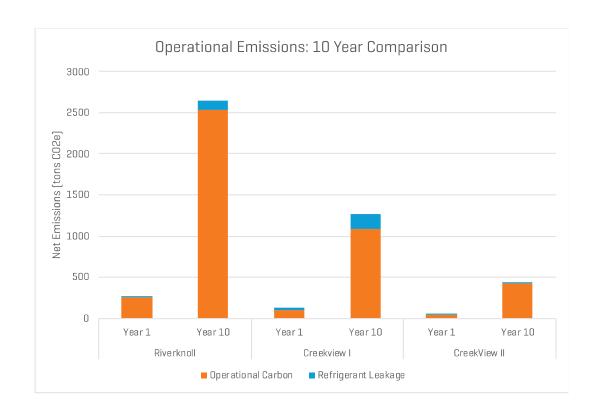
97% annual reduction in predicted refrigerant emissions

- Minimized leakage
- Less refrigerant used
- Lower Global Warming Potential (GWP) refrigerant (R-454B)

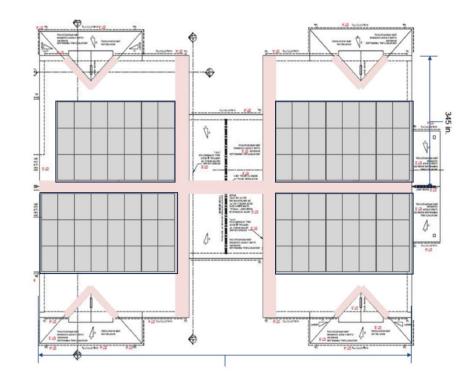


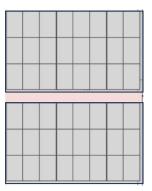

Carbon Emissions

Operational Carbon Emissions



Operational Carbon Emissions



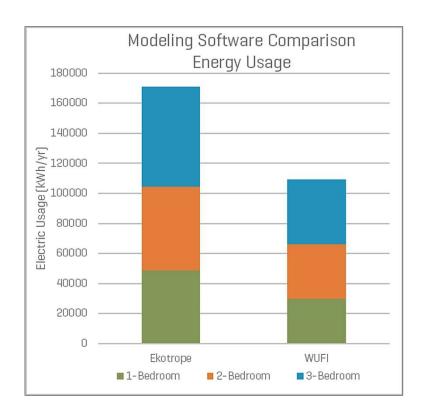

PV Comparison: Phius vs. Code

Benefits of Phius Load Reduction

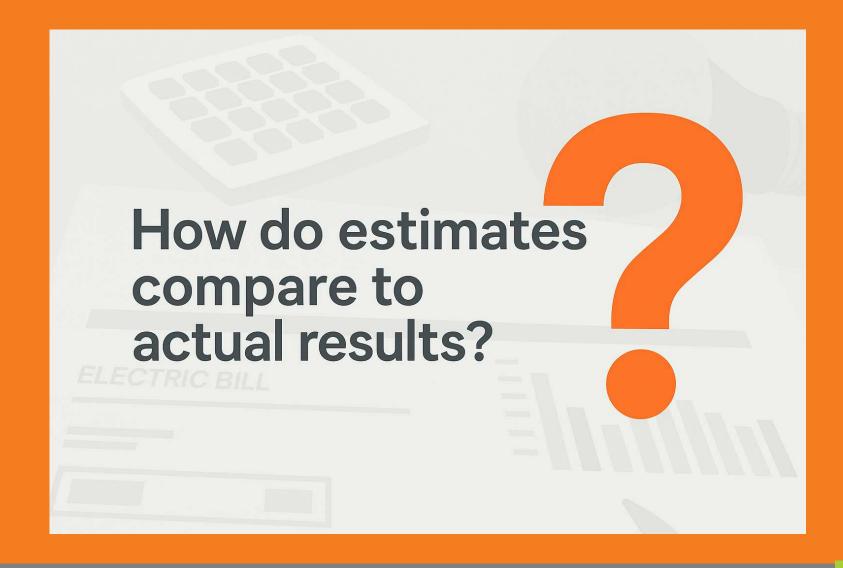
Three Bedroom Solar needs

- Passive Building
 - Per unit 5.6 kW
 - Per building 44.8 kW
- Code Building
 - Per unit 9.5 kW
 - Per building 76 kW
- 41% increase in solar needs

Additional solar needed for code-built building


WUFI vs. Ekotrope: Predicting Building Performance

Energy Modeling Software Comparison


Ekotrope vs WUFI for CreekView Phase II

	ELECTRIC USAGE				
UNIT TYPE	Ekotrope (kWh/yr)	WUFI Model (kWh/yr)			
Creekview II 1BR Building	48,560	29,628			
CreekView II 2BR Building	56,044	36,649			
CreekView II 3BR Building	66,420	43,133			
CreekView II Total	513,072	328,230			
Difference	36%				

Estimated PV production: 353,808 kWh/yr

CreekView Phase I - Utility Allowances

Utility Allowance vs. Predicted Performance

Utility Allowance Comparison					
	20	24 Actual Utility Allowances		Ekotrope Model	WUFI Model
1 Bedroom (\$/Unit/Month)	\$	71	\$	91	\$ 76
2 Bedroom (\$/Unit/Month)	\$	97	\$	104	\$ 83
3 Bedroom (\$/Unit/Month)	\$	146	\$	123	\$ 106
Total Property (\$/Year)	\$	90,562	\$	91,584	\$ 76,278
Difference				1%	-16%

CreekView Phase I - Energy Use Comparison

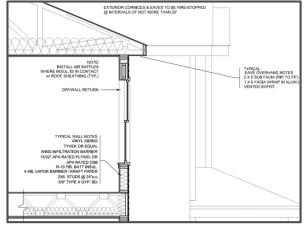
3 sample units extrapolated into the entire property

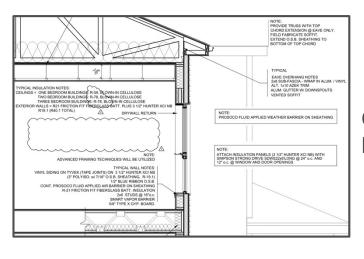
Electric Energy Use Comparison				
	Actual kWh	Ekotrope Model kWh	WUFI Model kWh	
Unit 113 - 1 Bedroom	5,959	4,468	3,196	
Unit 52 - 2 Bedroom	9,610	7,556	5,629	
Unit 45 - 3 Bedroom	11,171	9,301	7,748	
Total Property (kWh/Year)	7,700,832	6,141,600	4,773,132	
Difference		-20%	-38%	

CreekView Phase I - Utility Cost Comparison

Cost Variations

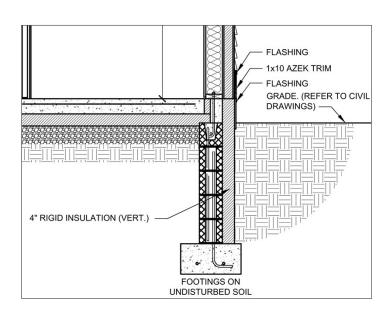
- Not dependent on building level.
- Occupancy dependent
- 1 Bedroom utility cost allowances may not be inclusive of all cost, because the energy usage in kWh was higher than the energy modeling, but overall cost was lower.



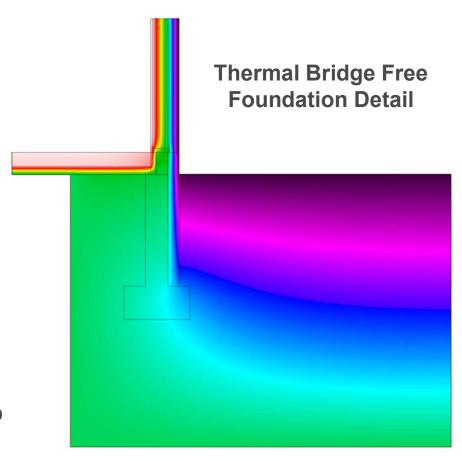


Envelope Comparison

Assembly Details			
ltem	RiverKnoll	CreekView Phase I & II	
Slab	R-10 to 4' Depth	R-15 Continuous Below Slab	
Wall	R-19 Batt, Advanced Framing	R-37 Total; R-21 Cavity + R-19 ci	
Air Barrier (wall)	Taped Tyvek	Fluid Applied	
Windows	Whole Window U-0.30	Whole Window U-0.16 & U-0.17	
Roof	R-38 Batt	R-59 - R-79 Blown in	

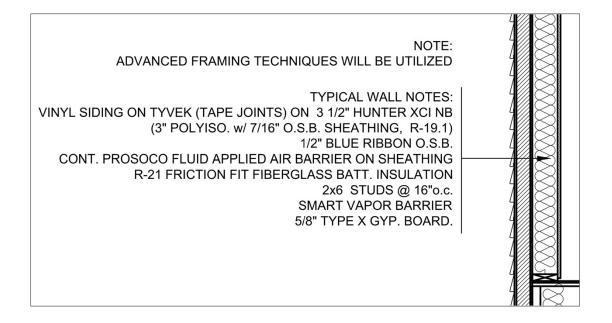


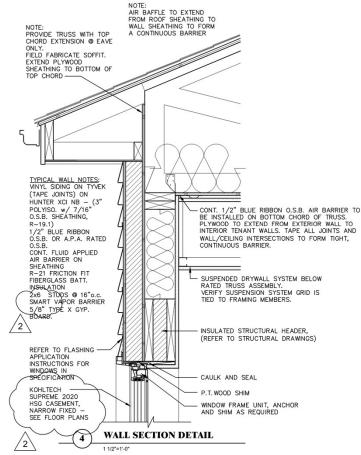
CreekView Phase I & II


Slab and Foundation

Foundation: 4" thick XPS (R-5/inch)

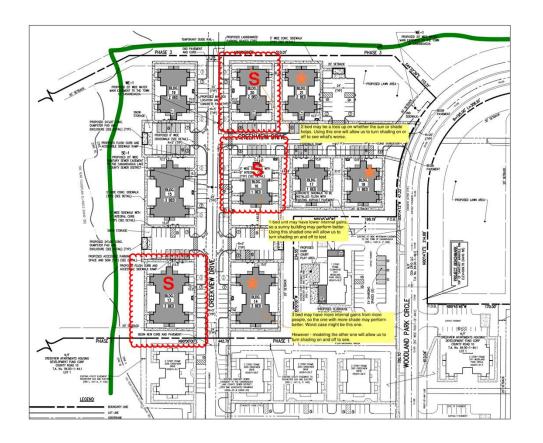
• Slab: 3" thick XPS (R-5/inch) under slab

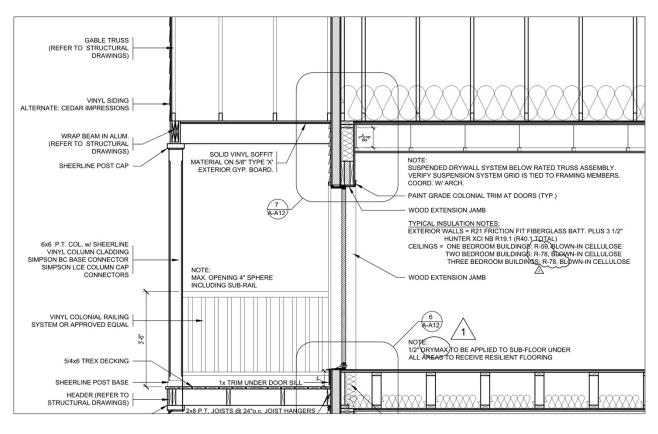

Slab Break: 2" thick XPS (R-5/inch)



Above Grade Walls

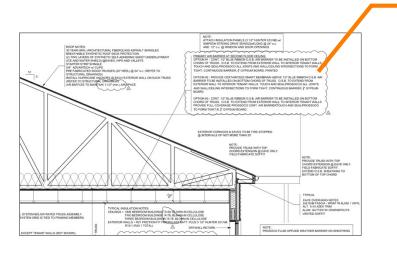
Primary air barrier at inner layer of sheathing




Modeling Different Shading Conditions

- Modeled one building from each occupancy type in early design.
- Chose the building with the most shading for simulation.
- Set specific shading to "transparent" in WUFI to model the least-shaded case.
- Secured design certification for one building of each type before submitting the rest.

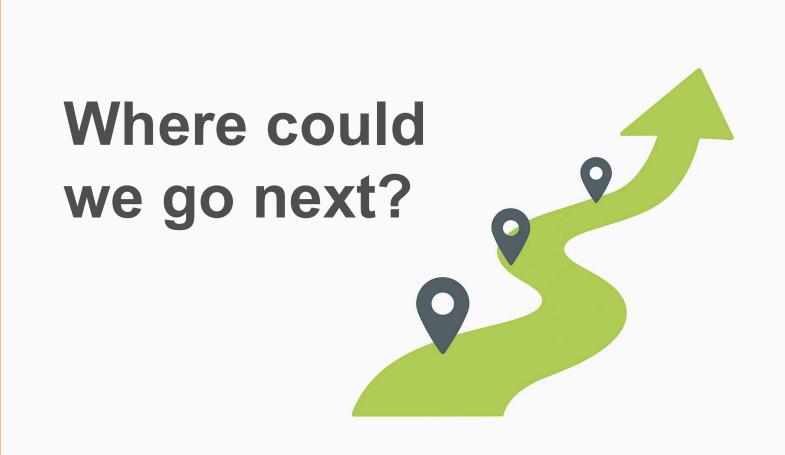
Porch Connection



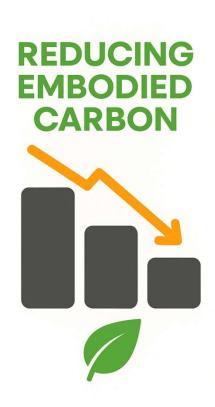
- Reduced thermal bridging.
- Porch roof connections are made at the outermost sheathing layer.
- Deck connection also at outermost layer.
- Requires columns at grade level.

Vented Attic

- Truss connection at the exterior wall posed air sealing challenges during phase I.
- Proposed three different attic air barrier options for contractor consideration.

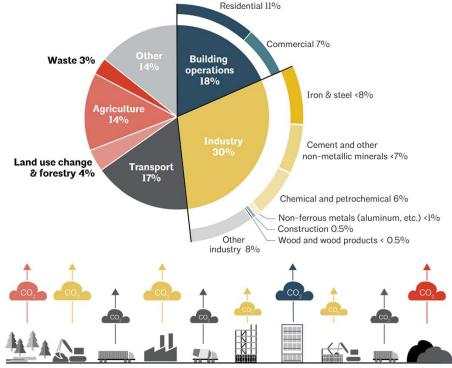

PRIMARY AIR BARRIER AT SECOND FLOOR CEILING:

OPTION #1 - CONT. 1/2" BLUE RIBBON O.S.B. AIR BARRIER TO BE INSTALLED ON BOTTOM CHORD OF TRUSS. O.S.B. TO EXTEND FROM EXTERIOR WALL TO INTERIOR TENANT WALLS. TOUCH AND SEAL/PROSSOCO ALL JOINTS AND WALL/CEILING INTERSECTIONS TO FORM TIGHT, CONTINUOUS BARRIER, § "GYPSUM BOARD, PAINTED


OPTION #2 - PROVIDE CERTAINTEED SMART MEMBRAIN ABOVE 1/2" BLUE RIBBON O.S.B. AIR BARRIER TO BE INSTALLED ON BOTTOM CHORD OF TRUSS. O.S.B. TO EXTEND FROM EXTERIOR WALL TO INTERIOR TENANT WALLS. TOUCH AND SEAL/PROSOCCO ALL JOINTS AND WALL/CEILING INTERSECTIONS TO FORM TIGHT, CONTINUOUS BARRIER, $\frac{5}{8}$ " GYPSUM BOARD

OPTION #3 - CONT. 1/2" BLUE RIBBON O.S.B. AIR BARRIER TO BE INSTALLED ON BOTTOM CHORD OF TRUSS. O.S.B. TO EXTEND FROM EXTERIOR WALL TO INTERIOR TENANT WALLS. PROVIDE FULL COVERAGE PROSSOCO CONT. AIR BARRIERTOUCH AND SEAL/PROSSOCO TO FORM TIGHT,R, $\frac{5}{8}$ " GYPSUM BOARD,

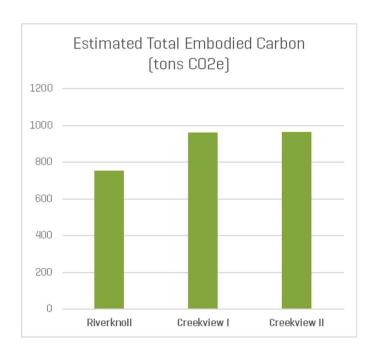
Embodied Carbon



- Buildings produce greenhouse gas (GHG) emissions in two main ways:
 - Operational carbon: Emissions from the energy used to run the building.
 - Embodied carbon: Emissions from materials and construction processes across the building's entire life cycle.
- Greenhouse gases like carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) are contributors to global warming.
- CO₂ accounts for about 76% of global GHG emissions being such a big contributor, "carbon" is often used as shorthand for all GHG emissions.

Embodied Carbon and Buildings

- Transportation Includes emissions from building materials shipping to processing facilities, construction sites, or landfills.
- Land Use Change & Foresty Includes the growth and harvest of wood and other bio-based building products.
- Waste Includes demolition and materials in landfills or incinerators.
- Industry as a makes up the largest percentage of GHG emissions.
- Building materials are a large source of industrial emissions.
- Steel and cement are a large part of that.



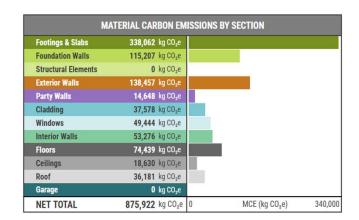
When considered over their full life cycle, the building industry influences nearly every major sector of global GHG emissions.

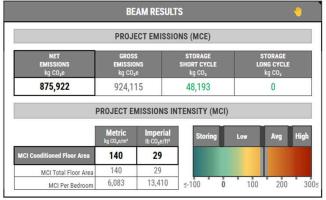
Graphic from AIA Carbon Leadership Forum

Embodied Carbon Estimates

Riverknoll – Embodied Carbon

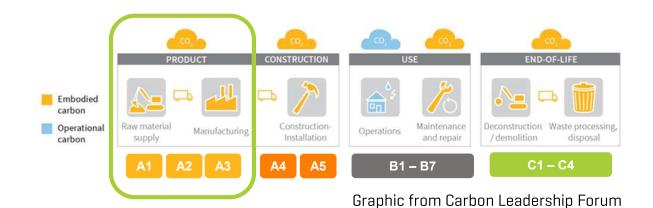
- 684 tons CO₂e.
- Less insulation = lower embodied carbon
 - No under-slab insulation
 - No continuous exterior insulation
 - Double-pane windows instead of triple-pane
- Lower embodied carbon upfront, but higher operational emissions from mechanical systems.


CreekView Phase I – Embodied Carbon


- 876 tons CO₂.
- Embodied carbon similar to Phase II, except exterior sheathing/insulation manufacturer change.
- Mechanical system changes may affect embodied carbon but not captured in this, only construction materials.
- Mechanical system changes may affect embodied carbon totals but not captured in this, only construction materials.

Creekview Phase II - Embodied Carbon

- Biggest sources: footings and slabs, then exterior and foundation walls.
- Main drivers: standard concrete mixes and high-carbon insulation.
- With low operational carbon, embodied carbon is a larger share of total emissions (even after 10 years).
- Performs well compared to similar projects despite not targeting embodied carbon reduction.
 - Aided by small unit sizes and use of cellulose insulation in the attic.



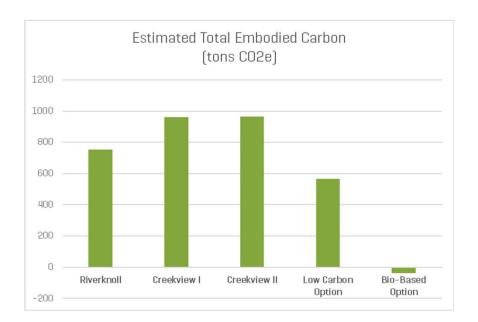
BEAM Embodied Carbon Results

Life Cycle Assessment Phases

- Life Cycle Assessment (LCA) Protocol "cradle-to-grave" or "cradle-to-cradle"
 - A1-A3, A4-A5, B1-B7, C1-C4 plus D (Beyond the Building)
- BEAM Estimator Phases A1-A3 or "cradle-to-gate"
- Athena Phases A-D or full LCA

Bio-Based Materials

- Bio-based materials reduce manufacturing emissions and store carbon that would otherwise enter the atmosphere.
- These materials trap atmospheric carbon within buildings for long periods, acting as long-term carbon storage.



Comparing Scenarios

Considered two theoretical scenarios:

- Low-Carbon Option: Focuses on easily available material swaps and reduced use of foams, while maintaining conventional construction practices.
- Bio-Based Option: Prioritizes deeper carbon storage using materials made from agricultural or forestry byproducts, keeping carbon out of the atmosphere and stored in the building.

Total Net Emissions				
CreekView II Low-Carbon Option Bio-Based Option				
Net Emissions (Tons CO₂e)	965	567	-38	

Footings, Slabs, and Foundations

Footings, Slabs, & Foundation				
	CreekView II	Low-Carbon Option	Bio-Based Option	
	CONCRETE FOOTINGS, SLABS, AND FILL FOR CMU WALL			
Material	Concrete - 3001-4000 psi, Standard mix / NRMCA [Industry Avg US & CA]	Concrete - 3001-4000 psi, 20-29% Fly Ash / NRMCA [Industry Avg US & CA]	Concrete - 2501-3000 psi, >50% SCM mix / NRMCA [Industry Avg US & CA]	
Net Emissions (Tons CO₂e)	271	233	170	
	SUB-	SLAB INSULATION & AGGRI	EGATE	
Material	XPS foam board / Owens Corning / Foamular NGX 250 / R 5.0/inch, 25 psi	Foam glass aggregate / Glasopor AS / R 1.7-inch, 10-60 mm [EU]	Foam glass aggregate / Glasopor AS / R 1.7-inch, 10-60 mm [EU]	
	Aggregate / NRMCA / US Average [Industry Avg]			
Net Emissions (Tons CO₂e)	122	8	8	
		CONTINUOUS INSULATION		
Material	XPS foam board / Owens Corning / Foamular NGX 250 / R 5.0/inch, 25 psi	XPS foam board / SOPREMA / SOPRA-XPS (entire product line) / R 5.0-inch	XPS foam board / SOPREMA / SOPRA-XPS (entire product line) / R 5.0-inch	
Net Emissions (Tons CO₂e)	30	7	7	

Concrete:

- Alternative concrete mixes with >50% SCMs can cut emissions by nearly half.
- Using performance-based specs and engaging the concrete supplier earlier can help meet carbon goals.

Insulation

- Foam glass aggregates provide insulation and slab stabilization while simplifying construction.
- Lower-emission XPS options can be used at slab edges and foundation walls.
- Newer materials may face cost and availability challenges during specification.

Above Grade Walls

Exterior walls offer major carbon reduction potential through insulation choices.

- Replace fiberglass batts with wood fiber batts (bio-based).
- Wood fiberboard in place of polyiso.
- Use panelized straw panels (biobased) to replace both cavity and exterior insulation and include interior service cavities.
- R-value reductions with specific materials may increase wall thickness.

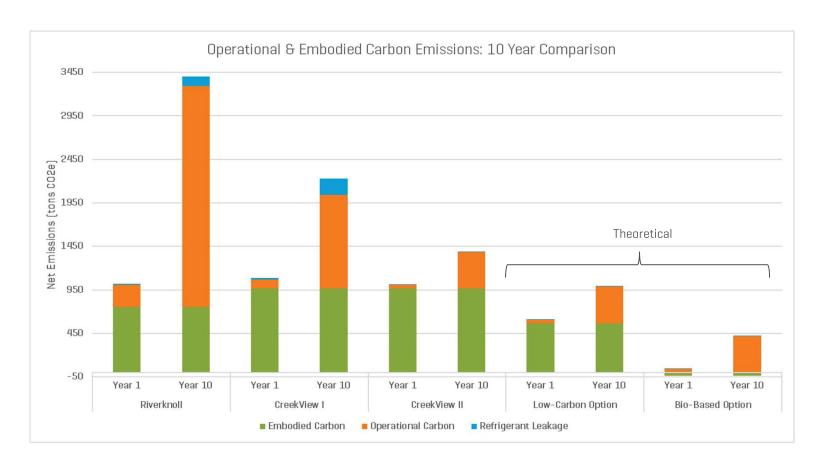
	CreekView II	Low Embodied Carbon	Bio-Based Materials		
	Walls				
	BARRIERS AND MEMBRANES				
MATERIAL	Liquid Applied Barrier / [BEAM Avg]	Ext. Wall barrier, liquid applied / Perm-a-Barrier VPL 50RS UV stable / 13 Perms, 0.51 mm	Sheet Barrier Moisture-Variable / [BEAM Avg]		
NET EMISSIONS tons CO₂e	28	8	4		
10113 0020	EXTERIOR WAL	L: CAVITY INSULATION, FRAM	ING. & SHEATHING		
MATERIAL	Fiberglass batt /R 4.4-inch [Industry Avg]	Fiberglass batt & roll / Owens Corning / Unfaced, PINK Next Gen Fiberglas / R 3.6-inch avg.	Straw Insulated Panels with wood framing (SIP) /		
	Wood / SPF / 2x6 Lumber [Industry Avg US & CA] OSB sheathing / 7/16" / LP / TopNotch® 350 / 7/16"	Wood / SPF / 2x6 Lumber [Industry Avg US & CA] OSB sheathing / 7/16" / LP / TopNotch® 350 / 7/16" Wood / 2x3 Lumber [Industry Avg US & CA]	Wood / SPF / 2x3 Lumber [Industry Avg US & CA]		
NET EMISSIONS	48	44	-378		
tons CO₂e					
MATERIAL	Polyisocyanurate / Wall Boards / Hunter / Xci / R 6.3-inch, 20 psi	CONTINUOUS INSULATION Wood fiber board / GUTEX / Multi-Therm / R 3.6-inch, 40- 200 mm [EU]	Wood fiber board / GUTEX / Multi-Therm / R 3.6-inch, 40- 200 mm [EU]		
NET EMISSIONS tons CO ₂ e	77	-54	-54		
	INTERIOR WALL: CAVITY INSULATION				
MATERIAL	Fiberglass batt / NAIMA / R 4.4-inch [Industry Avg N.America]	Fiberglass batt & roll / Owens Corning / Unfaced, PINK Next Gen Fiberglas / R 3.6-inch avg.	Hemp fiber batt / NaturFibre / Hemp Wool / R 3.7-inch		
NET EMISSIONS tons CO₂e	9	6	0		

Cladding, Drywall, Attic, and Roof

- Vinyl siding has lower embodied carbon than brick, stucco, fiber cement, stone, or metal.
- Bio-based alternatives like engineered wood or bamboo are possible but may face cost and procurement challenges.
- Drywall can be swapped for USG EcoSmart, though the carbon savings are modest.
- Emissions from asphalt shingles from one manufacturer to the next can vary.

Cladding					
	CreekView II	Low-Carbon Option	Bio-Based Option		
	EXTERIOR WALL CLADDING				
Material	Vinyl Siding / Vinyl Siding Institute / 0.040" Double 4.5" [Industry Avg US & CA]	Vinyl Siding / Vinyl Siding Institute / 0.040" Double 4.5" [Industry Avg US & CA]	Bamboo Cladding / Dasso / dassoCTECH outdoor oiled Cladding / Shiplap, 5/8" (18 mm)		
Net					
Emissions (Tons CO₂e)	25	25	-41		
	DRYWALL (WALLS & CEILINGS)				
	Drywall 1/2" [BEAM Avg US & CA]	Drywall 1/2" [BEAM Avg US & CA]	Drywall 1/2" [BEAM Avg US & CA]		
Material	Drywall 5/8" Type X / Gypsum Association [Industry Avg US & CA]	Drywall 5/8" / USG / Sheetrock Brand EcoSmart Firecode X / 5/8"	Drywall 5/8" / USG / Sheetrock Brand EcoSmart Firecode X / 5/8"		
Net Emissions (Tons CO₂e)	88	70	70		

Roof				
	CreekView II	Low-Carbon Option	Bio-Based Option	
	ROOF CAVITY INSULATION			
Material	Cellulose / loose fill / CIMA / R 3.7-inch / [Industry Avg US & CA]	Cellulose / loose fill / CIMA / R 3.7-inch / [Industry Avg US & CA]	Cellulose / loose fill / CIMA / R 3.7-inch / [Industry Avg US & CA]	
Net Emissions (Tons CO₂e)	-34	-34	-34	
Material	Asphalt Shingles / Asphalt Roofing Manufacturers Association / Fiberglass Asphalt Shingles [Industry Avg US & CA]	Asphalt Shingles / Malarkey Roofing / Dura- Seal /	Asphalt Shingles / Malarkey Roofing / Dura- Seal /	
Net Emissions (Tons CO₂e)	23	12	12	


Flooring

- Flooring emissions vary widely by manufacturer.
- Interface carpet fully offsets embodied carbon; some linoleum products can even store carbon.
- The BEAM tool lists manufacturer options and supports requesting EPDs for accurate data.
- Designers should use BEAM and/or similar tools during material selection to factor embodied carbon into decisions.

FLOORING				
	CreekView	Low-Carbon Option Floors	Bio-Based Option	
	FLOOR COVERING			
Material	Carpet / [BEAM Avg]	Carpet / Shaw / Residential Broadloom with ClearTouch Platinum	Carpet / Interface / CQUEST BioX / 1.5 mm Modular tile carpet	
Net Emissions (Tons CO₂e)	55	33	0	
Material	Vinyl flooring / Resilient Floor Covering Institute / Heterogeneous [Industry Avg US & CA]	Linoleum flooring / 4.0 mm [BEAM Avg]	Linoleum flooring / Tarkett / Lino Veneto xf2, Etrusco, Style Elle Emme, Veneto, Originale, LinoRail, Linosport / 2.5 mm sheet style linoleum	
Net Emissions (Tons CO₂e)	11	2	-1	
	F	LOOR CAVITY INSULATION	N	
Material	Fiberglass batt / NAIMA / R 4.4-inch [Industry Avg N.America]	Fiberglass batt & roll / Owens Corning / Unfaced, PINK Next Gen Fiberglas / R 3.6-inch avg.	Hemp fiber batt / NaturFibre / Hemp Wool / R 3.7-inch	
Net Emissions (Tons CO₂e)	15	9	0.37	

10 Year Comparison

Team Effort

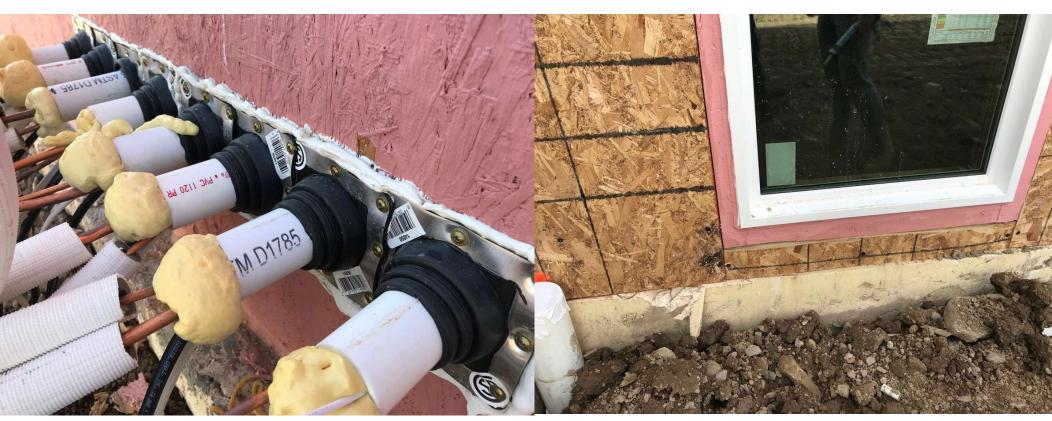
Thank you! Any questions?

Britt Clark – britt@greenrater.com Chris Straile – chris@greenrater.com

Worcester Headquarters 55 Linden Street Worcester, MA 01609 508-713-6680 New York Office 639 North Salina Street Syracuse, NY 13208 315-552-9060

CreekView Phase I Photos

Bonus Content



Thermal Bridging

Connections

Construction Phase

Fluid Applied Air Barrier

Concept

Reality

Result

Construction Phase

Continuous Ceiling Air Barrier

Concept

Reality

Result

PHIUS+ Certification Process

Schematic Design: Initial Layout and Systems

Pre-Certification: Approved Modeling and CD's

Construction Inspections: Insulation & Air Sealing Checks

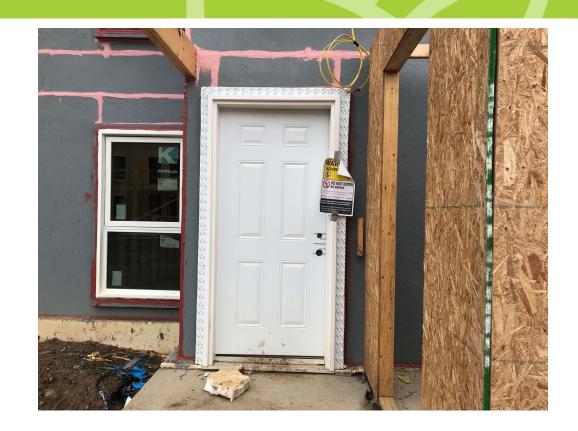
Final Testing: Air Tightness & Commissioning

Certification: Final Certifications

Insulation Levels

No Thermal Bridging

- - Continuous insulation at walls
- - Porch point connections
- - Storage room held away
- Foundation walls held away

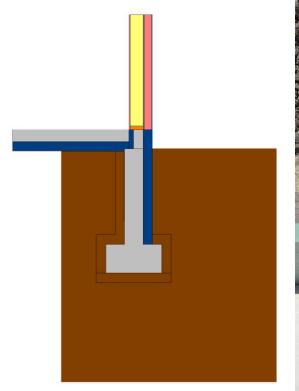


Insulation Levels

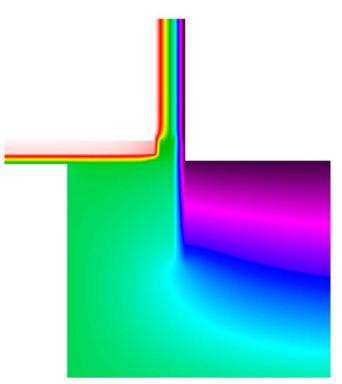
Windows/Doors

- - Triple pane insulated
- - Casements/Fixed for air tightness
- - ADA sills vs. air tightness
- - Fall protection?

Insulation Levels


Sub-Slab Insulation

- - R-15 Underslab Insulation
 - 3" EPS Foam
 - Vapor Retarder
 - Concrete Slab
- - Slab Edge Detailing
 - 2" vertical slab edge
 - 4" exterior foundation wall



Foundation Insulation Inspection

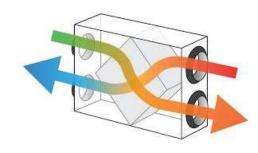
Attic Air Sealing

Ceiling Insulation

- - R-60 to R-80 Wall
 - OSB Sheathing as primary air barrier
 - Taped seams
 - Drywalled ceiling

Mechanical Systems

Ventilation

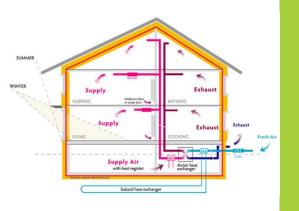

• - Continuous Exhaust

• Bathroom: 20 CFM

• Kitchen: 25 CFM

• - Supply register to each room

• - Range hood recirculating

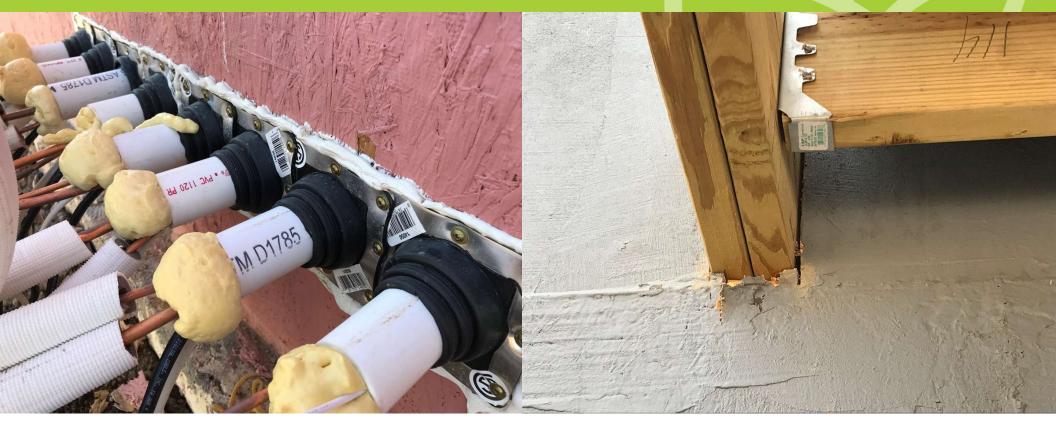


Mechanical Systems Installation

Install air source heat pumps off the ground adequate for snow not to interfere with operation

The Value of Verification

- Identifying major constructability items that may have been overlooked
- Preparing for and performing the whole building air tightness testing/Compartmentalization
- Important to catch design/product issues early, ideally at air sealing or open wall inspection
- PHIUS verification overlaps with other energy green program requirements



Foundation Insulation Inspection

Install Coordination


Primary Air Barrier Failure

Fluid Applied Air Barrier

Concept

Reality

Result

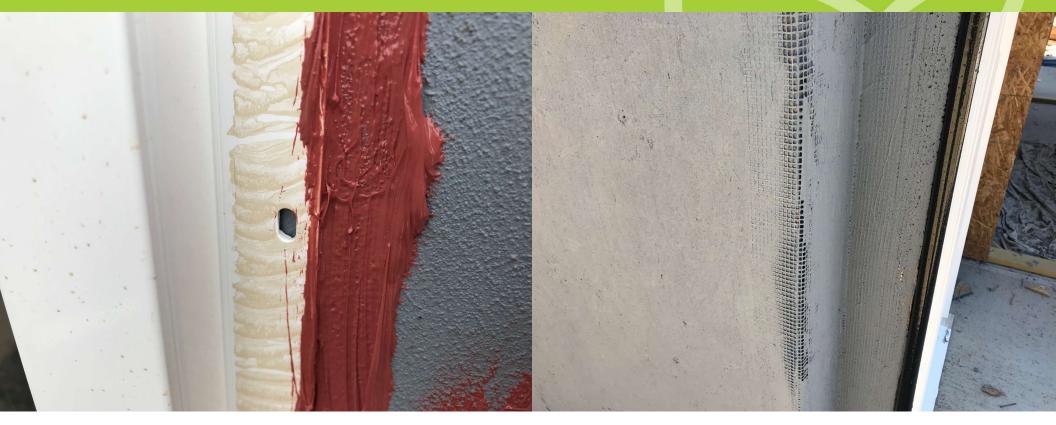
Preliminary Testing

Interior Spray Foam

Test 1: Initial Pre-Test Test 2: Spray Foam Interior Target: Continuous Air Barrier 970 CFM50 862 CFM50 706 CFM50

Continuous Ceiling Air Barrier

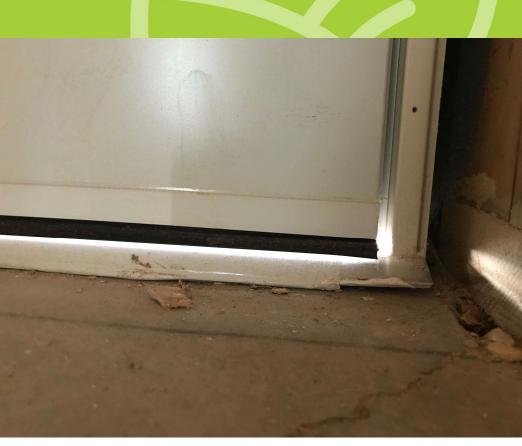
Reality



Quality of Install

Connections

Building Components


Material Selection

Reality

Material Compatibility

PHIUS+ Certification Process

Schematic Design: Initial Layout and Systems

Pre-Certification: Approved Modeling and CD's

Construction Inspections: Insulation & Air Sealing Checks

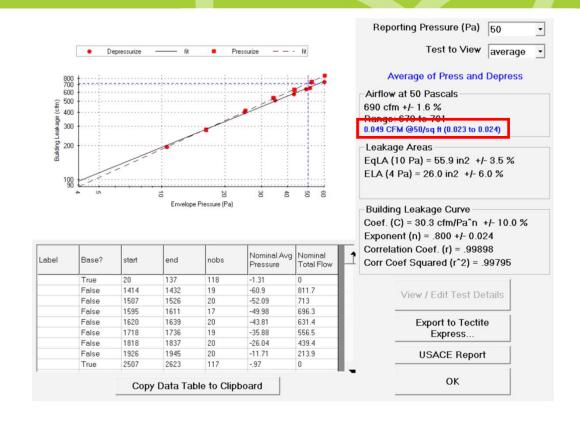
Final Testing: Air Tightness & Commissioning

Certification: Final Certifications

Air Tightness Testing

Air Tightness

- - Continuous air barrier across building
- - Air tight windows (casement) and doors
- - Buildings meet 0.05 CFM50/sf of Shell
- - Testing occurred pre-drywall and final



Air Tightness Testing

Results:

• - Target: 0.05 CFM50/sf of Shell

		TARGET
UNIT	ENVELOPE	BLOWER DOOR
	AREA	TARGET (@50Pa)
3 Bedroom	17,192	860
2 Bedroom	14,113	706
1 Bedroom	11,481	574

Air Tightness Testing

Final Verification

Additional Verification

- - Hot Water Distribution
- - Ventilation Flow Rates
- - Ventilation wattages
- - Final equipment efficiencies

PHIUS+ Certification Process

9

Schematic Design: Initial Layout and Systems

Pre-Certification: Approved Modeling and CD's

Construction Inspections: Insulation & Air Sealing Checks

Final Testing: Air Tightness & Commissioning

Certification: Final Certifications

Certification

Timeline:

- - PHIUS+ Verifier submission for review
- - Completed PHIUS+ Workbook
- -Verification Picture
- -Thermal Imaging
- - Finalized additional certifications
 - NYSERDA Low Rise New Construction
 - Energy Star Homes V3.1
 - DOE Net Zero Energy Ready
 - EPA Indoor AirPlus

CreekView Apartments Ph 1

a DiMarco Group company

Glasow Architecture

Special Thanks to the Project Team!

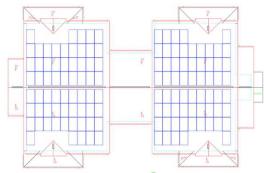
CreekView Apartments Canandaigua, NY

Early Design \$1 Million Award

Glasow Architecture

CreekView Apartments Phase II

- How to get a PHIUS Project to Net Zero?
 - Size of roof now dictates source energy, how to reduce building loads to fit in budget of roof produced solar.
 - Geothermal heating/cooling/DHW central per building
 - Central ERV systems to reduce construction and maintenance cost
 - Solar PV Owner paid remote net metering
 - Owner pays all utilities for the project
 - 108 Individual Electric Meters 1 apt meter + 1 blg meter
 - Solar PV on each building tied into 1 owner meter



- Feedback from all contractors for ideas welcomed
- Regular check points to reassess project goals
- Net-Zero goal dictates final loads of the building
- Solar capacity constrained by roof sizing and orientation
- Building orientations optimized
- Insulation and equipment sized to solar capacity

