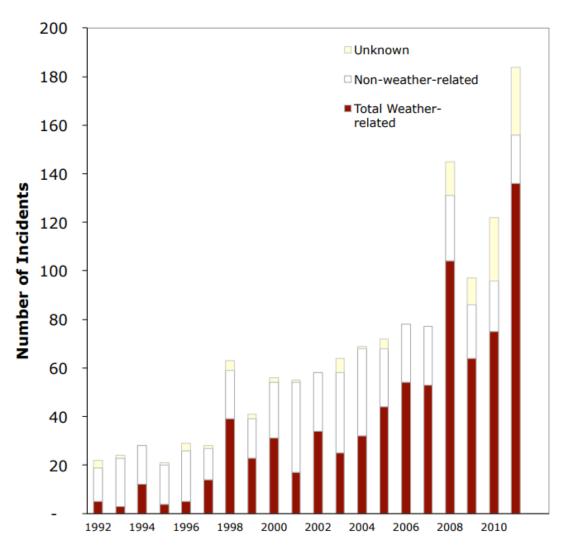
Assessing Passive Survivability in Multifamily Buildings

Lisa White, PHIUS Certification Manager


Outline

- Background
- Defining Passive Survivability
- Assessment Protocol & Simulation Setup
- Winter Resilience Results
- Summer Resilience Results
- Conclusions

WEATHER RELATED POWER DISRUPTIONS

1992 to 2010:

- 1,333 significant US electric grid disturbances occurred in the United States
- 78% of them being weather related
- Affected more than 178 million metered customers

Cause	% of events	Mean size in MW	Mean size in customers
Earthquake	0.8	1,408	375,900
Tornado	2.8	367	115,439
Hurricane/tropical storm	4.2	1,309	782,695
Ice storm	5.0	1,152	343,448
Lightning	11.3	270	70,944
Wind/rain	14.8	793	185,199
Other cold weather	5.5	542	150,255
Fire	5.2	431	111,244
Intentional attack	1.6	340	24,572
Supply shortage	5.3	341	138,957
Other external cause	4.8	710	246,071
Equipment failure	29.7	379	57,140
Operator error	10.1	489	105,322
Voltage reduction	7.7	153	212,900
Volunteer reduction	5.9	190	134,543

Туре	Impact Region	Predictability	Span/area	Affecting time
Hurricane, tropical storm	Coastal regions	24-72 hours, moderate to good	Large (radius up to 1,000 miles)	Hours to days
Tornado	Inland plains	0-2 hours, bad to mod- erate	Small (radius up to 5 miles)	Minutes to hours
Blizzard, Ice Storm	High lat- itude re- gions	24-72 hours, moderate to good	large, up to 1,000 miles	Hours to days
Earthquake	Regions on fault lines	Seconds to minutes, bad	Small to large	Minutes to days (after- shock)
Tsunami	Coastal regions	Minutes to hours, moderate	Small to large	Minutes to hours
Drought, Wild Fire	Inland regions	Days, good	Medium to large	Days to months

NYC Manhattan Outages post Hurricane Sandy 2012

Many places left without power for > 5 days

PASSIVE SURVIVABILITY

A building's ability to maintain livable conditions when sources such as electricity, water, or heating fuel are cut off.

- Alex Wilson, 2005

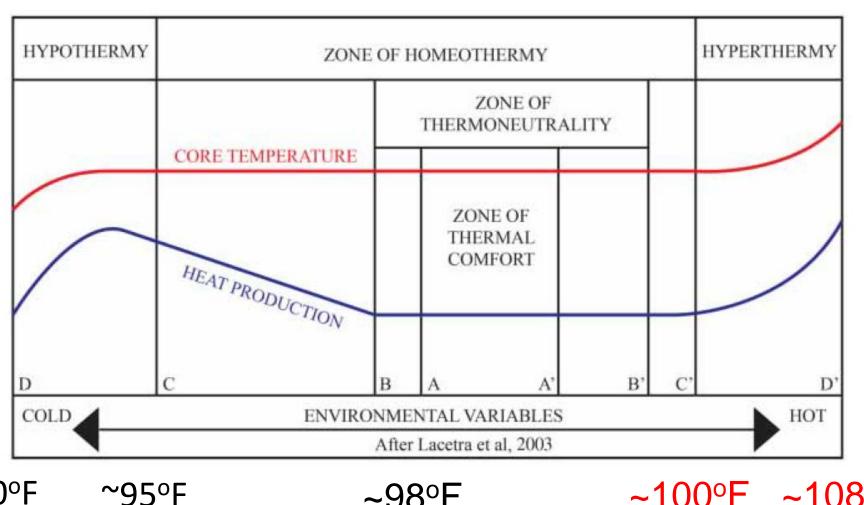
METRICS FOR PASSIVE SURVIVABILITY

ASHRAE's Thermal Environmental Conditions for Human Occupancy Standard 55-2004

Indoor Summer Comfort Range: 74°F – 83°F

Indoor Winter Comfort Range: 67°F – 79°F

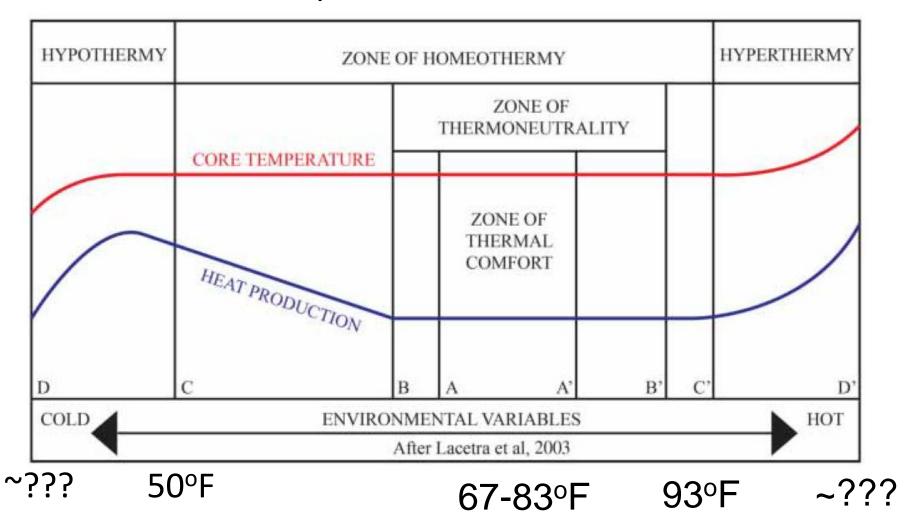
Acceptable for naturally ventilated spaces: 50°F – 93°F


Homeothermy: form of temperature regulation used by humans, where the body maintains the same internal core temperature (98.6°F), regardless of external influences.

PASSIVE SURVIVABILITY

A building's ability to maintain livable conditions when sources such as electricity, water, or heating fuel are cut off.

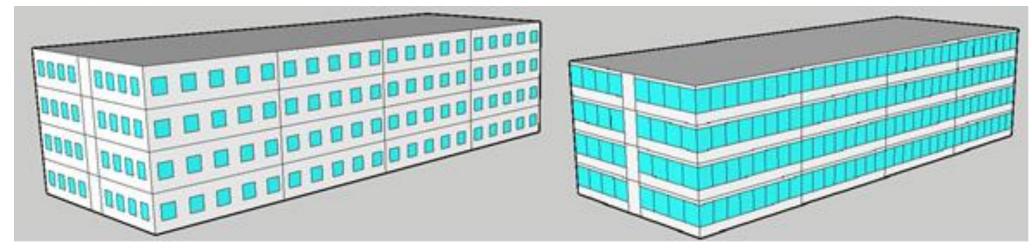
Metrics for passive survivability


Core body temperatures shown below.

~80°F ~95°F ~98°F ~100°F ~108°F

Metrics for passive survivability

Interior/room temperatures shown below.


PASSIVE SURVIVABILITY

Assessment overview

- Determine resilience design week
- Model worst case unit of multifamily buildings in WUFIplus
- Simulate 5-day outages on worst case units
- Note interior conditions
- 'Rate' for passive survivability

ASSESSMENT OVERVIEW

	Ov	verview of 8 Unique Building Types	
1	-20% WWR	WOOD FRAMED CONSTRUCTION	ASHRAE 90.1
2		WOOD FRANCED CONSTRUCTION	PHIUS+ 2015
3		ICF/CONCRETE CONSTRUCTION	ASHRAE 90.1
4		ICF/CONCRETE CONSTRUCTION	PHIUS+ 2015
5		WOOD FRAMED CONSTRUCTION	ASHRAE 90.1
6	60% WWR	WOOD FRANCED CONSTRUCTION	PHIUS+ 2015
7	00% WWK	ICF/CONCRETE CONSTRUCTION	ASHRAE 90.1
8		ICF/CONCRETE CONSTRUCTION	PHIUS+ 2015

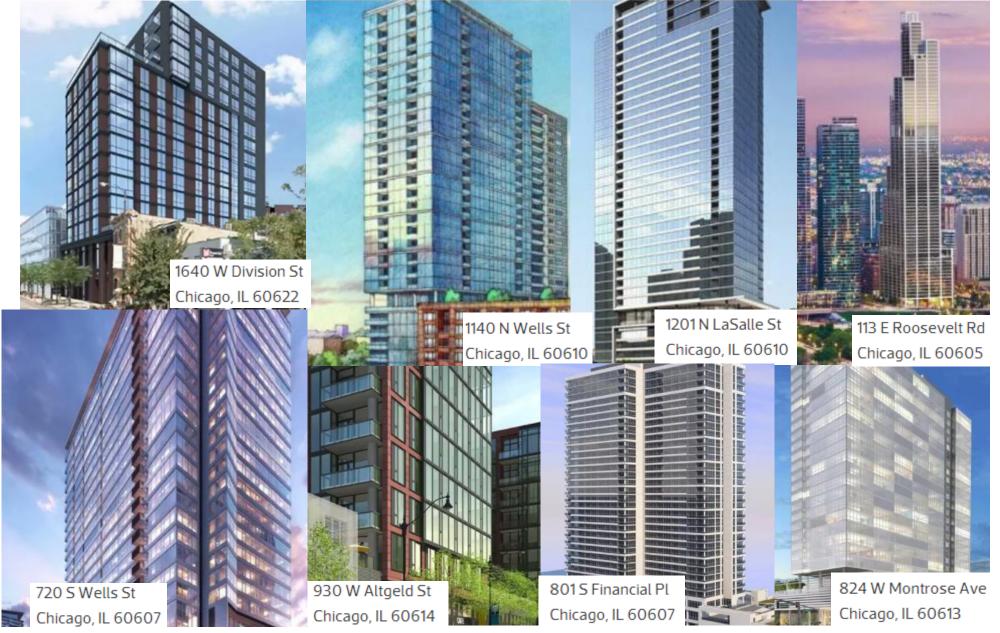
ASSESSMENT OVERVIEW - VARIABLES

1) Window to wall ratio

20%, 60%

2) Building Performance Standards

ASHRAE 90.1, PHIUS+ 2015

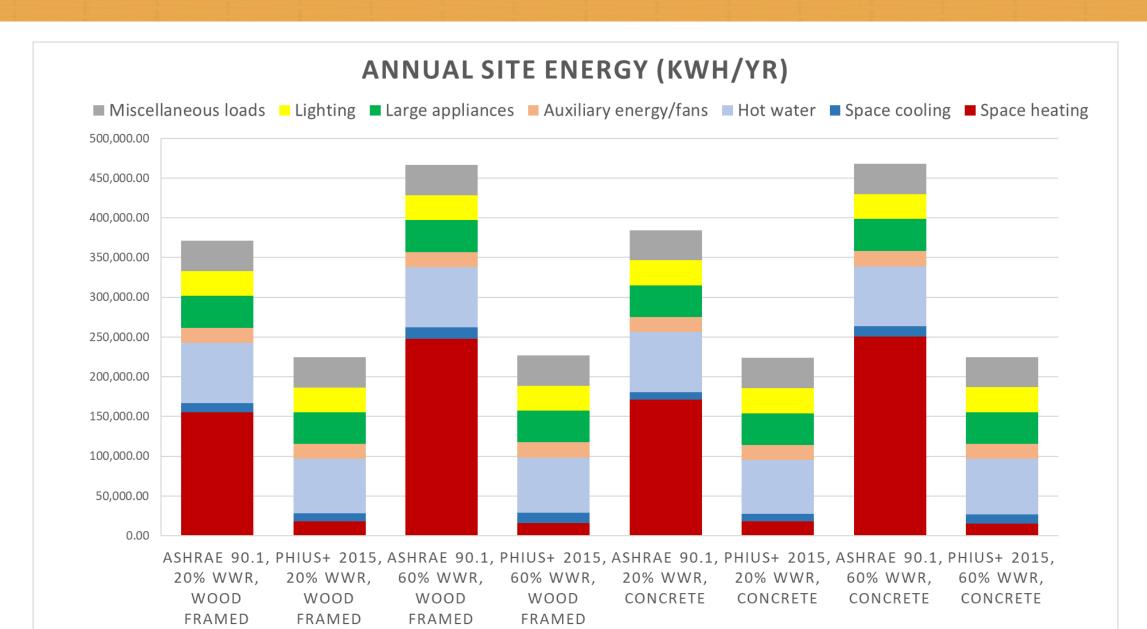

3) Construction Types / Thermal Mass

Wood-framed, concrete/insulated concrete forms

4) Orientation of units

Southwest, Northeast

BUT IN REALITY...

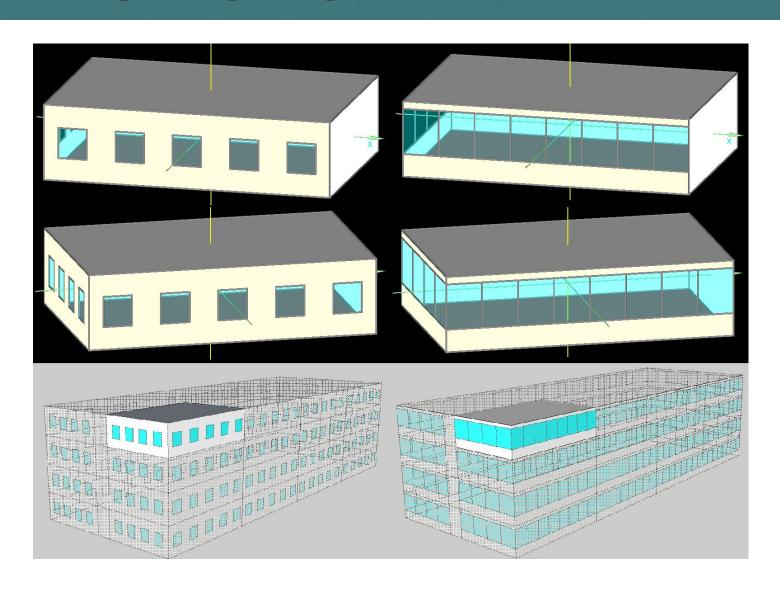

Picture Courtesy of Curbed Chicago

8 Unique Building Types

Main Characteristics

Wind	low to Wall Ratio		20% \	WWR	•	60% WWR						
Со	nstruction Type	WOOD FRAM	MED CONST.	ICF/CONCR	ETE CONST.	WOOD FRAM	MED CONST.	ICF/CONCRETE CONST.				
Perfo	Performance Standard		PHIUS+ 2015	ASHRAE 90.1	HRAE 90.1 PHIUS+ 2015		ASHRAE 90.1 PHIUS+ 2015		PHIUS+ 2015			
	Wall	R13+7.5ci	R22 + 8ci	R13.3 ci	R24 ci	R13+7.5ci	R22 + 8ci	R13.3 ci	R32 ci			
Onagua	Roof	R49 Attic	R49 Attic	R30 ci	R36 ci	R49 Attic	R49 Attic	R30 ci	R36 ci			
Opaque Building	Floor Slab	Uninsulated	Uninsulated	Uninsulated	Uninsulated	Uninsulated	R4 Slab	Uninsulated	R4 Slab			
Envelope	Perimeter Insulation	R20 for 24"	N/A	R20 for 24"	N/A	R20 for 24"	N/A	R20 for 24"	N/A			
Liivelope	Specific Heat Capacity [BTU/ft2.F]	11 (Ligh	tweight)	23 (N	lixed)	11 (Lightweight) 23 (Mixed			lixed)			
	Operability	All operable										
Windows	SHGC (glass only)	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.2			
Willdows	U-Value, Whole Window [BTU/hr.ft2.F]	0.46	0.25	0.46	0.25	0.46	0.28	0.46	0.28			
Chading	Interior Blinds				80% (20%	% shaded)						
Shading	Site Shading				80% (20%	% shaded)						
	CFM75/ft2	0.4	0.08	0.4	0.08	0.4	0.08	0.4	0.08			
Infiltration	CFM50/ft2	0.31	0.05	0.31	0.05	0.31	0.05	0.31	0.05			
	ACH50	1.95	0.32	1.95	0.32	1.95	0.32	1.95	0.32			

SITE ENERGY



OUTAGE SIMULATION SETUP

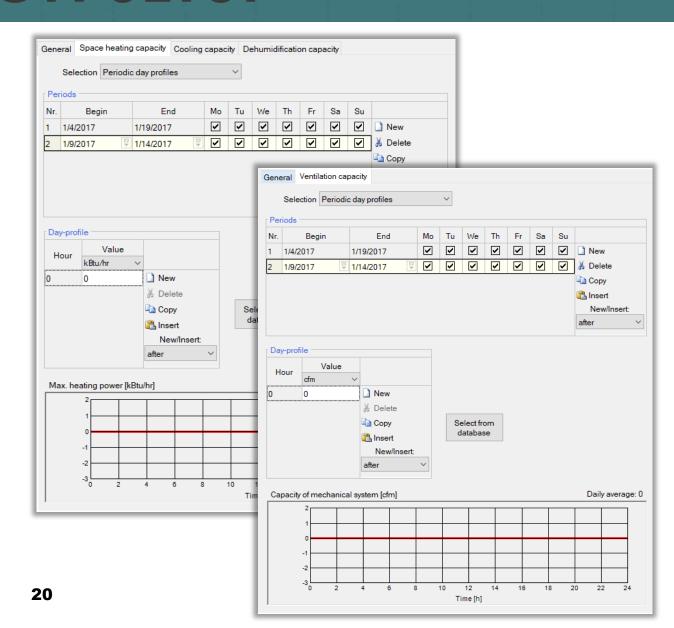
- 32 dynamic simulations
- Simulate outage during 5day resilience design week

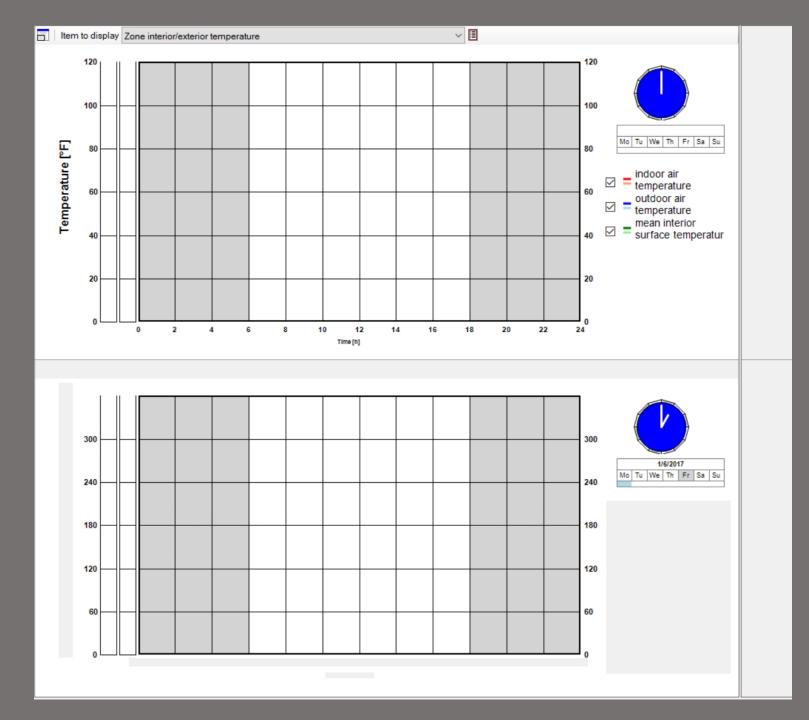
Cover all combinations of:

- 8 buildings
- 2 unit locations
- 2 seasons

RESILIENCE DESIGN WEEK

- Similar to ASHRAE 99.6% and 0.4% design temperatures used to calculate heating and cooling loads
- 16 years of climate data (1998-2015)
- Look at 5-day moving average temp.
- Create histogram
 - Determine 99.6% temperature, choose hour with lowest global radiation
 - Determine 0.4% temperature, choose hour with highest global radiation
- Winter and summer resilience design weeks start at midnight on day that hour occurs

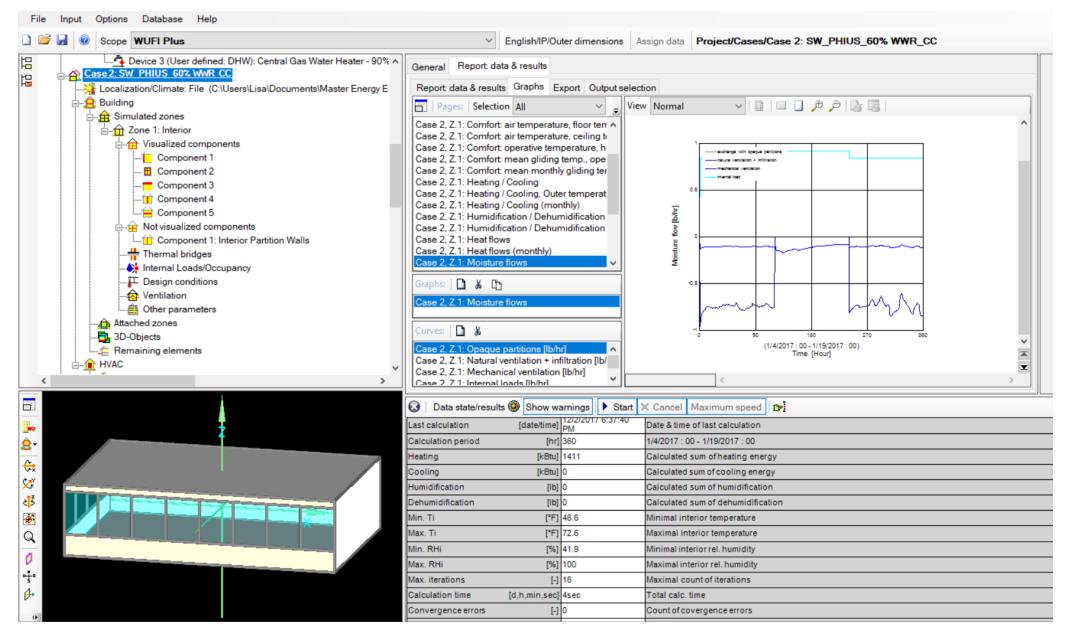

Chicago:


Winter – January 9-14, 1999

Summer – August 3-8, 2007

OUTAGE SIMULATION SETUP

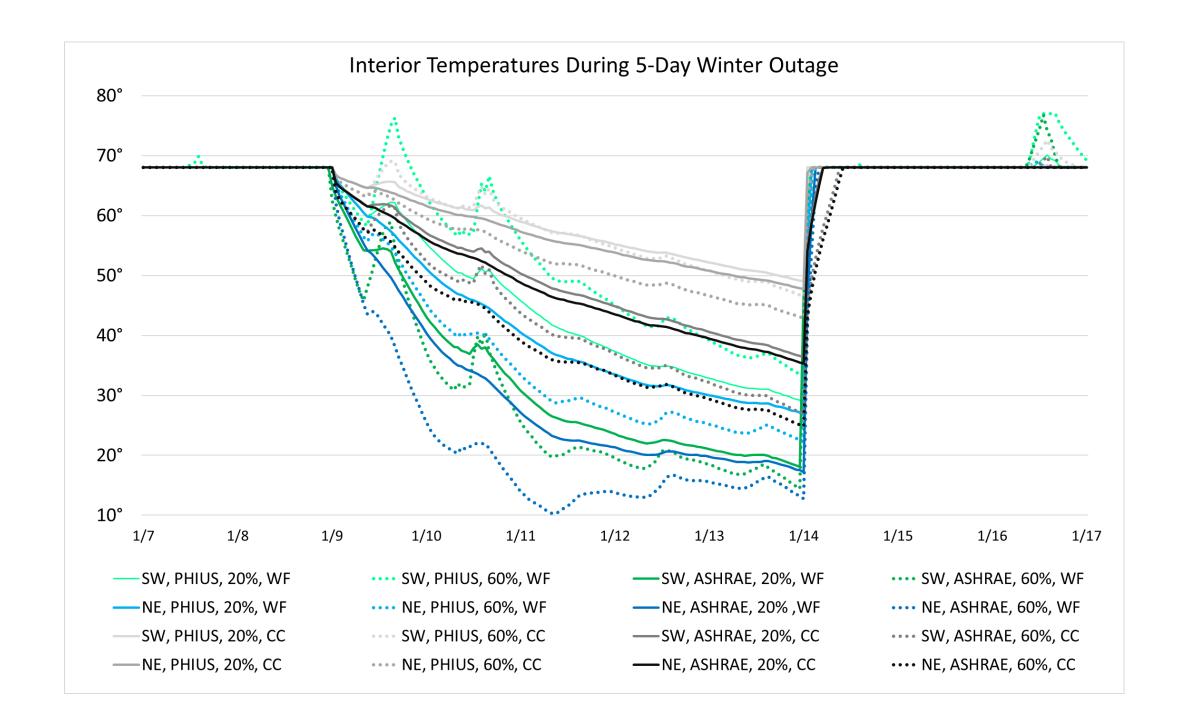
- Hourly modeling tool (WUFIplus)
- Remove heating and cooling capacity
- Remove ventilation capacity
 - Some natural ventilation in both summer and winter
- Internal gains/loads in the space reduced to occupant only, no lighting, appliances, or miscellaneous loads
 - Should use mostly flat load profile rather than typical day

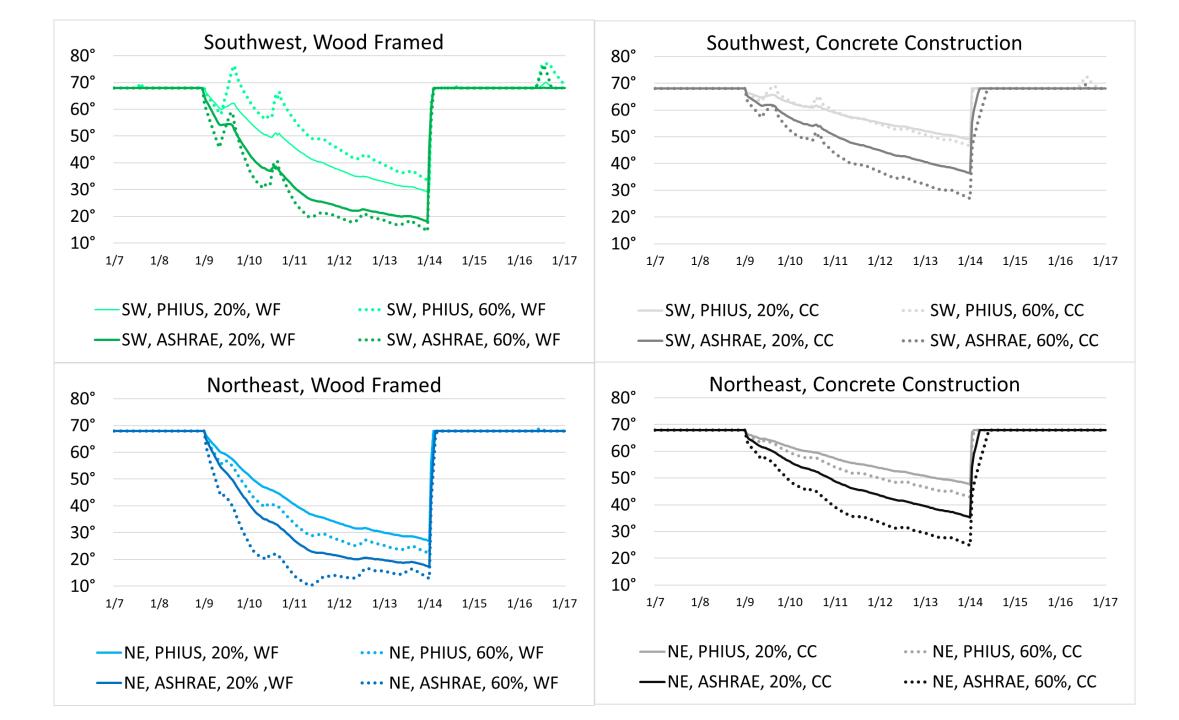


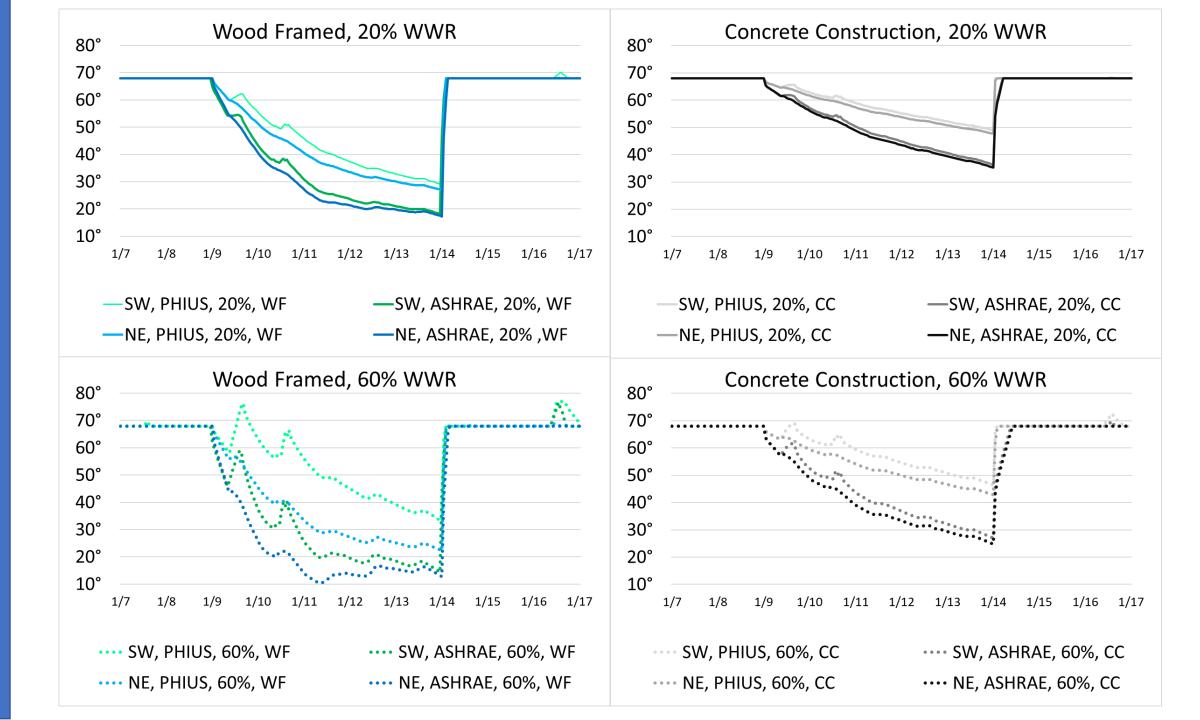
Interior Temperature

Solar Radiation

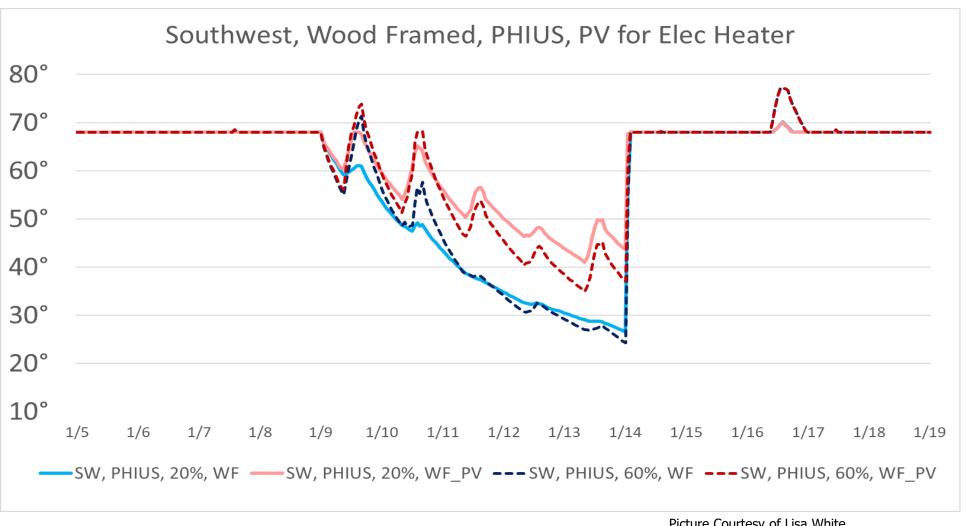
Modeling Software - WUFIplus


								% of Hours in Simulation Above Threshold Temperature											
Case	Season	Const. Type	Orient ation	Standard	WWR %	Avg. Temp.	Min. Temp.	>65°F	>60°F	>55°F	>50°F	>45°F	< 40°F	< 35°F	< 30°F	>25°F	>20°F	>15°F	>10°F
1		1		PHIUS	20	43.8	29.2	3%	14%	21%	32%	42%	53%	68%	97%	100%	100%	100%	100%
2		framed	SW	FIIIO3	60	50.9	33.5	13%	27%	41%	47%	61%	78%	97%	100%	100%	100%	100%	100%
3		шŧ	300	ASHRAE	20	32.0	18.1	0%	3%	7%	15%	19%	23%	36%	42%	54%	91%	100%	100%
4		fra		ASITIVAL	60	28.5	14.4	0%	1%	6%	12%	17%	20%	27%	38%	41%	61%	98%	100%
5		þ		PHIUS	20	40.4	27.1	3%	8%	16%	22%	33%	42%	55%	81%	100%	100%	100%	100%
6		Wood	NE	111103	60	35.5	22.9	3%	5%	13%	18%	22%	33%	39%	47%	83%	100%	100%	100%
7	er	\geqslant	INL	ASHRAE	20	30.3	17.7	2%	5%	8%	13%	18%	22%	28%	38%	45%	79%	100%	100%
8	nt			7.01117.12	60	21.8	10.3	2%	3%	4%	6%	8%	13%	16%	18%	22%	36%	60%	100%
9	Winter			PHIUS	20	57.6	49.2	12%	37%	62%	95%	100%	100%	100%	100%	100%	100%	100%	100%
10	>	CF	SW	111100	60	57.3	46.8	11%	39%	59%	83%	100%	100%	100%	100%	100%	100%	100%	100%
11		 / e	300	ASHRAE	20	49.2	36.8	3%	16%	27%	42%	61%	84%	100%	100%	100%	100%	100%	100%
12		et(7.01117.12	60	42.9	27.5	2%	10%	18%	29%	39%	48%	68%	93%	100%	100%	100%	100%
13		CL	NE	PHIUS	20	56.3	47.9	7%	28%	53%	85%	100%	100%	100%	100%	100%	100%	100%	100%
14		Concrete/ICF		111100	60	53.2	43.1	3%	19%	38%	60%	93%	100%	100%	100%	100%	100%	100%	100%
15		Ŭ	INL	ASHRAE	20	48.1	35.7	3%	13%	23%	38%	55%	79%	100%	100%	100%	100%	100%	100%
16				, .S (L	60	39.7	25.4	2%	6%	14%	20%	33%	40%	56%	78%	100%	100%	100%	100%

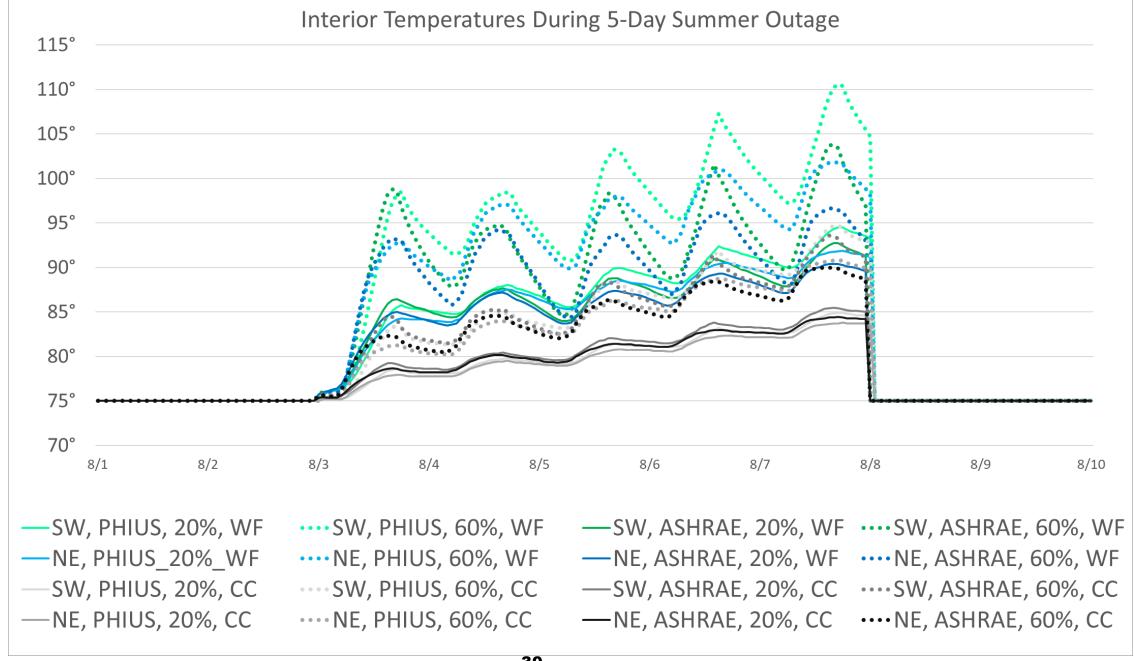

Percentage of hours *above* threshold temperature shown across the top

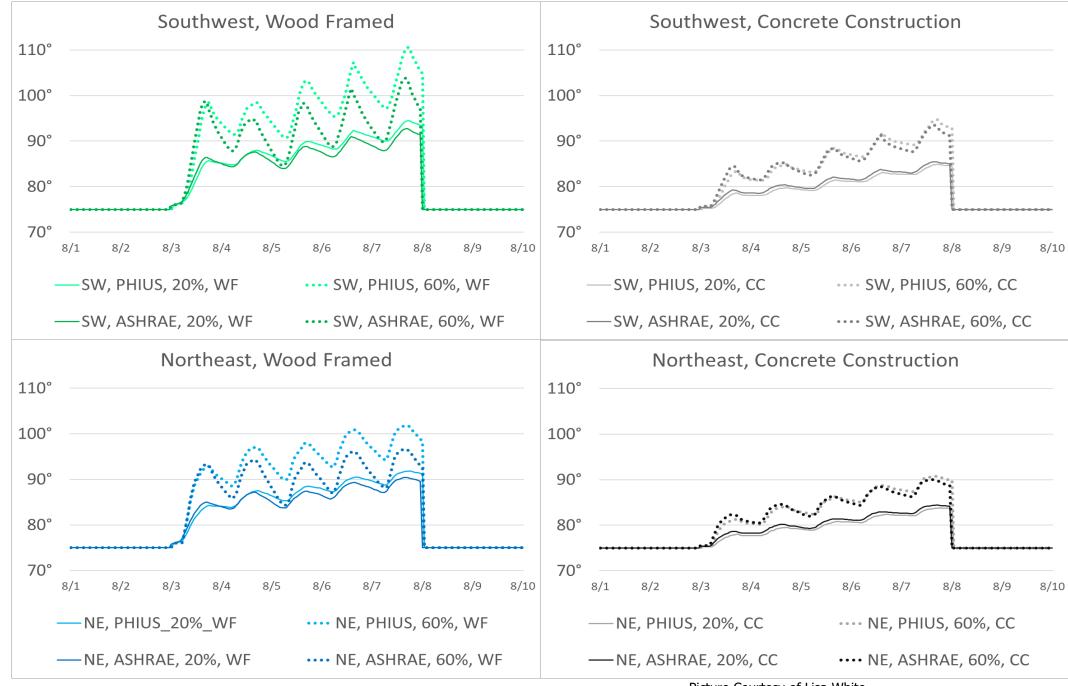

<50% = red 50-90% = yellow >90% = green

Case #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Season								inter									
Construction Type			'	Wood	framed	ł						Concre	ete/ICF				
Orientation		S	W			Ν	E			S'	W			N	E		
Standard	PH	IUS	ASH	RAE	PH	IUS	ASH	RAE	PH	IUS	ASH	RAE	PH	IUS	ASH	RAE	
WWR (%)	20	60	20	60	20	60	20	60	20	60	20	60	20	60	20	60	
°F dropped in 1 hour	1.8	2.3	1.7	2.7	1.8	2.8	3.1	6.0	1.3	1.8	2.5	4.2	1.3	1.8	2.5	4.2	
°F dropped in 4 hours	4.4	5.3	5.7	9.1	4.4	6.8	7.5	13.9	2.3	3.2	4.2	7.1	2.3	3.2	4.2	7.1	
°F dropped in 12 hours	6.9	1.0	10.5	7.6	9.1	11.3	15.9	25.0	2.7	1.1	6.2	7.7	3.6	4.2	7.1	10.9	
Temp (°F) at 1 AM Day 1	66.2	65.8	63.2	59.8	66.2	65.2	64.9	62.0	66.7	66.2	65.5	63.8	66.7	66.2	65.5	63.8	
Temp (°F) at 4 AM Day 1	63.6	62.7	59.2	53.4	63.6	61.2	60.5	54.1	65.8	64.8	63.8	60.9	65.8	64.8	63.8	60.9	
Temp (°F) at Noon Day 1	61.1	67.0	54.4	54.9	58.9	56.7	52.1	43.0	65.3	66.9	61.8	60.3	64.4	63.8	60.9	57.1	

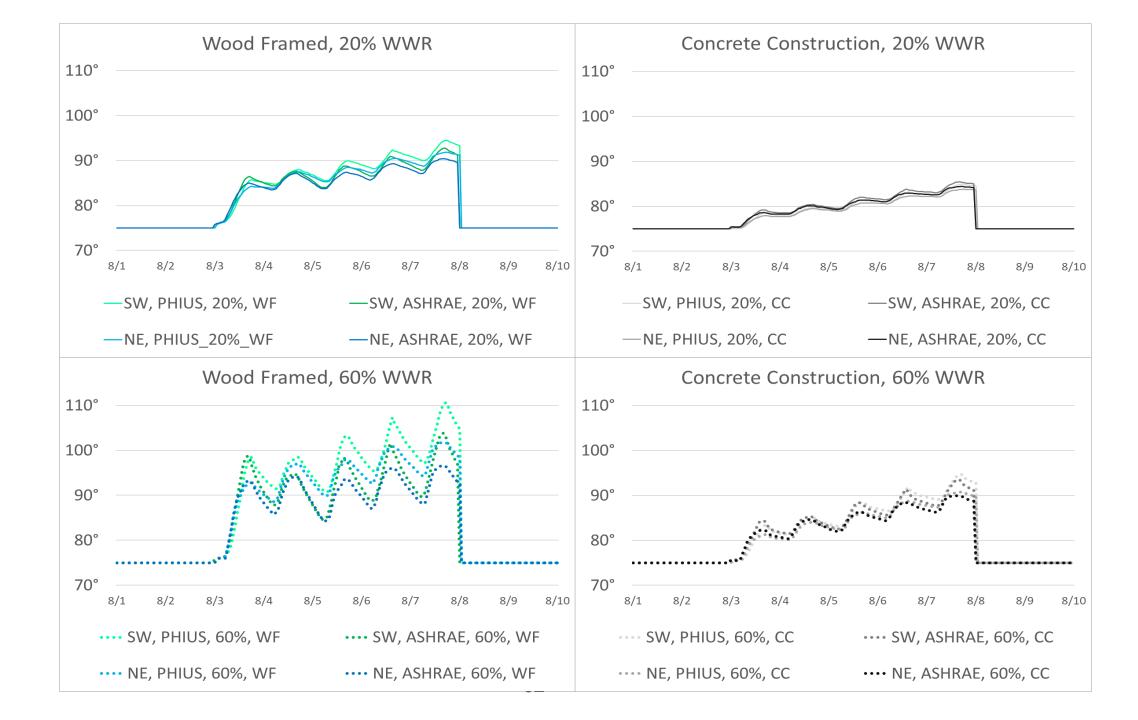

Decrease in interior temperature after 1 hour, 4 hours, and 12 hours

195 kW array, instantaneous PV output used for ventilation & electric resistance space heating during outage



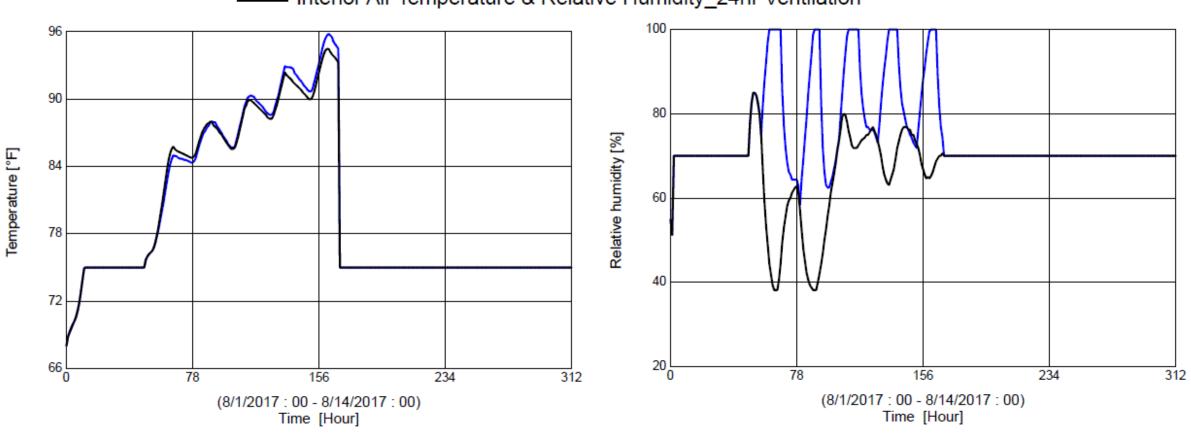

Summer Resilience Results

									% of I	Hours in Sin	nulation Be	low Thresh	old Tempei	rature														
Case	Season	Const. Type	Orient ation	Standard	WWR %	Avg. Temp.	Max. Temp.	< 80°F	< 85°F	< 90°F	< 95°F	< 100°F	< 105°F	< 110°F	< 115°F													
17				PHIUS	20	81.6	94.5	59%	59%	70%	100%	100%	100%	100%	100%													
18		pa	CVA	РПОЗ	60	86.0	110.6	59%	59%	59%	59%	76%	88%	98%	100%													
19		m	SW	ASHRAE	20	80.8	92.7	60%	60%	83%	100%	100%	100%	100%	100%													
20		framed		ASHNAL	60	83.2	103.8	60%	60%	66%	80%	92%	100%	100%	100%													
21				חווונ	20	81.1	91.9	59%	59%	81%	100%	100%	100%	100%	100%													
22		Wood	NIT	PHIUS	РПІОЗ	РПІОЗ	60	84.3	101.9	59%	59%	59%	69%	87%	100%	100%	100%											
23	e.	\wedge	NE	ASHRAE	ASHRAE	ACLIDAT	20	80.5	90.4	59%	59%	93%	100%	100%	100%	100%	100%											
24	l W					60	82.1	96.7	59%	59%	72%	88%	100%	100%	100%	100%												
25	E			DITILIC	20	78.3	84.9	59%	100%	100%	100%	100%	100%	100%	100%													
26	Summer	Ŧ,	CVV	PHIUS	60	81.3	94.7	59%	59%	80%	100%	100%	100%	100%	100%													
27		/ICF	SW	ACLIDAE	20	78.5	85.5	59%	92%	100%	100%	100%	100%	100%	100%													
28		ite		ASHKAE	ASHKAE	ASHKAE	ASHKAE	ASHKAE	ASHRAE	ASHKAE	ASHKAE	ASHKAE	ASHKAE	ASHKAE	ASHKAE	ASHKAE	ASHKAE	60	80.9	93.6	59%	59%	83%	100%	100%	100%	100%	100%
29		cre		PHIUS	20	78.0	83.8	59%	100%	100%	100%	100%	100%	100%	100%													
30		Concrete,	NIE		60	80.4	90.8	59%	60%	90%	100%	100%	100%	100%	100%													
31]	Ŭ	NE		20	78.2	84.4	59%	100%	100%	100%	100%	100%	100%	100%													
32				ASHRAE	60	80.1	90.0	59%	65%	100%	100%	100%	100%	100%	100%													


Percentage of hours **below** threshold temperature shown across the top <50% = red

$$50-90\% = yellow$$

Picture Courtesy of Lisa White



FUTURE OUTLOOK

- Study additional climates
- Study additional designs
- Re-run with future climate data sets
- Study with varying levels of internal gain/occupancy stress cases
- Study with varying levels of natural ventilation
- Investigate shading strategies
- Detailed airflow model for ventilation
- Small backup power for designated undisturbed loads

Natural vent – summer test

- Interior Air Temperature & Relative Humidity_12hr Night Ventilation Only
- Interior Air Temperature & Relative Humidity_24hr Ventilation

CONCLUSIONS

- Concrete construction has a higher passive survivability rating than wood or steel framed
- Lower window-to-wall ratio and natural ventilation strategies are critical for maintaining favorable conditions during summer outages
- Insulation and air-tightness substantially increase interior temperature during winter outages
- Resilient design strategies need a higher priority and should be quantified and given a higher priority