Passive House + Living Building: Combining Rigorous Building Standards for Maximum Benefit

Christina Aßmann NCARB, LEED AP BD+C, CPHC
Nicole Schuster AIA, LEED AP BD+C, CPHC

September 29, 2017
Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.
Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© Ashley McGraw Architects, D.P.C. 2017
Course Description

Ashley McGraw Architects and Binghamton University are currently collaborating to design and construct a 2800 square foot research station. The project is located proximate to campus on a 70+ acre nature preserve called Nuthatch Hollow, and is being designed to become certified as a Living Building by the International Living Futures Institute. The project team includes two Passive House Certified Consultants, who chose to overlay the Passive House Standard with the Living Building Challenge as a methodology to achieve rigorous energy use reductions in a high performance building.

As a requirement of the Living Building Challenge, the Nuthatch Hollow project must achieve net positive energy, which means 105% of the project's energy needs must be supplied by on-site renewable energy on a net annual basis, without the use of on-site combustion. Meeting the ambitious Passive House limits on heating and cooling loads, as well as source energy, will allow the Nuthatch project to easily meet the Living Building net positive energy requirements. This approach is more difficult than typical design strategies, but much more valuable in terms of investment and resilience. A PHIUS feasibility study has been initiated and will inform the ongoing design process.

Combining Passive House and Living Building presents some interesting challenges. The strict thermal requirements of Passive House and the material use limitations presented by the LBC “Red List”, makes the selection of common building components, like windows, energy recovery ventilators, and insulation materials, into a very rigorous investigative process. The composting toilets used to achieve the water use limitations of LBC must be designed to ventilate through the building envelope in accordance with Passive House thermal and air tightness requirements. On-site energy storage required for LBC must be located strategically in order to eliminate any negative thermal impacts within the Passive House envelope. Reuse of the existing building foundation to meet site disturbance limitations within LBC requires specific attention to envelope details to achieve Passive House.

We are learning many valuable strategies through this challenging process. Collaboration is crucial to understand the building use and schedule in order to reduce loads as much as possible. Binghamton University faculty and students are engaged through integrated course curriculum in the vast amount of materials research required. In the face of all of the challenges, we will keep pushing the limits of what can be accomplished, to reach our climate goals for the future of people and planet.
Learning Objectives

At the end of this course, participants will be able to:

1. Learn how the Passive House standard can facilitate the path to the Living Building Challenge Energy Petal.

2. Understand the compound challenges of meeting two very rigorous building programs: Passive House and Living Building Challenge, and some strategies for overcoming those challenges.

3. Understand documentation and research strategies to overcome the challenges of public bidding an ultra-high performance building.
AGENDA

• Place
• Project
• Living Building Challenge
• Design
• Combining Standards
• Challenges and Strategies
Nuthatch Hollow
Nuthatch Hollow
Essence of Nuthatch Hollow

Discovery
Diversity
Variety
Layered
Movement
Rhythm
Balance
Resilient
Ancient
Complex
Rejuvenating
Happiness
Oasis

Sanctuary
Water
Nutrients
Changing
Evolving
Energy
Understanding
Intertwined
Sensory (all 5)
Random
Connection
Separation
Mystery
The Living Building at Nuthatch Hollow
WHO ARE YOU?
The Living Building at Nuthatch Hollow

MULTI-
PURPOSE

LAB
The Living Building at Nuthatch Hollow
GOALS
GOALS

• Place for environmental research
GOALS

• Place for environmental research
• Hub for interdisciplinary collaboration
GOALS

• Place for environmental research
• Hub for interdisciplinary collaboration
• Engage a wider audience
GOALS

• Place for environmental research
• Hub for interdisciplinary collaboration
• Engage a wider audience
• Smart energy technology
GOALS

- Place for environmental research
- Hub for interdisciplinary collaboration
- Engage a wider audience
- Smart energy technology
- Replicable
GOALS

• Place for environmental research
• Hub for interdisciplinary collaboration
• Engage a wider audience
• Smart energy technology
• Replicable
• Living Building Certification
LIVING BUILDING CHALLENGE SM
3.0
A Visionary Path to a Regenerative Future
MATERIALS
1 PLACEMENT
PLACEMENT

Multipurpose Room

Lab
Roof Plan

PHOTOVOLTAICS ON METAL ROOF

WOOD DECK

VEGETATED ROOF
Current Status

Source Energy:
38 KBTU/sf*yr or 11.1kWh/sf

Site Energy:
12.025 KBTU/sf*yr or 3.513kWh/sf*yr

@2909 sf =
10,218.32kWh/yr
<table>
<thead>
<tr>
<th>Name</th>
<th>Begin utilization [hr]</th>
<th>End utilization [hr]</th>
<th>Annual utilization days [days/yr]</th>
<th>Occupant quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Occupancy</td>
<td>8</td>
<td>17</td>
<td>112</td>
<td>45</td>
</tr>
<tr>
<td>Summer Typical</td>
<td>10</td>
<td>12</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>Once a week</td>
<td>8</td>
<td>22</td>
<td>28</td>
<td>60</td>
</tr>
<tr>
<td>Weekend</td>
<td>10</td>
<td>14</td>
<td>56</td>
<td>5</td>
</tr>
<tr>
<td>Summer Camp</td>
<td>9</td>
<td>16</td>
<td>14</td>
<td>45</td>
</tr>
</tbody>
</table>
Roof: R-72
Walls: R-61
Below Grade Walls: R-48
Slab: R-48
Windows: Uw 0.11
Below Grade Walls: R-48
At each hourly time step

\[
\text{if } [SOC \leq 0 \text{ or } SOC \geq BC] \text{ then } \\
\quad B = 0 \\
\text{else} \\
\quad B = B' \\
\text{end if}
\]

\[
C_{RE,\text{batt}} = \frac{\sum \max(0, B_{\text{hour}} + \min(LE_{\text{hour}}, RE_{\text{hour}}))}{\sum RE_{\text{hour}}}
\]

Where is the battery state-of-charge, is the battery capacity, and

\[B' = LE - RE\]

The battery state of charge at each step is calculated as

\[
SOC_{\text{hour}} = \min(BC, \max(0, SOC_{\text{hour-1}} - B_{\text{hour}} \cdot (1 + k_{\text{LOSS}} \text{sign } B'_{\text{hour}})))
\]
Carrying Capacity
Project water needs must be met within the carrying capacity of the site’s natural water systems. For example, if the supply is rainwater, there must be sufficient opportunities for evapotranspiration and infiltration; if the supply is groundwater, there must be sufficient opportunities to recharge the aquifer. Where water is returned to the aquifer after use, it must be reintroduced so that it does not compromise natural systems (e.g., appropriately treated and reintroduced at an undamaging temperature, etc.).

Figure 1. Closed Water Loop - Site Pre-LBC Project Development

Figure 2. Closed Water Loop - Site Post-LBC Project Development
Carrying Capacity
Project water needs must be met within the carrying capacity of the site’s natural water systems. For example, if the supply is rainwater, there must be sufficient opportunities for evapotranspiration and infiltration. If the supply is groundwater, there must be sufficient opportunities to recharge the aquifer. Where water is returned to the aquifer after use, it must be reintroduced so that it does not compromise natural systems (e.g., appropriately treated and reintroduced at an undamaging temperature, etc.).

Figure 1. Closed Water Loop - Site Pre-LBC Project Development

Figure 2. Closed Water Loop - Site Post-LBC Project Development
<table>
<thead>
<tr>
<th>Name</th>
<th>Begin utilization [hr]</th>
<th>End utilization [hr]</th>
<th>Annual utilization days [days/yr]</th>
<th>Occupant quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Occupancy</td>
<td>8</td>
<td>17</td>
<td>112</td>
<td>45</td>
</tr>
<tr>
<td>Summer Typical</td>
<td>10</td>
<td>12</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>Once a week</td>
<td>8</td>
<td>22</td>
<td>28</td>
<td>60</td>
</tr>
<tr>
<td>Weekend</td>
<td>10</td>
<td>14</td>
<td>56</td>
<td>5</td>
</tr>
<tr>
<td>Summer Camp</td>
<td>9</td>
<td>16</td>
<td>14</td>
<td>45</td>
</tr>
<tr>
<td>Name</td>
<td>Begin utilization [hr]</td>
<td>End utilization [hr]</td>
<td>Annual utilization days [days/yr]</td>
<td>Occupant quantity</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Typical Occupancy</td>
<td>8</td>
<td>17</td>
<td>112</td>
<td>45</td>
</tr>
<tr>
<td>Summer Typical</td>
<td>10</td>
<td>12</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>Once a week</td>
<td>8</td>
<td>22</td>
<td>28</td>
<td>60</td>
</tr>
<tr>
<td>Weekend</td>
<td>10</td>
<td>14</td>
<td>56</td>
<td>5</td>
</tr>
<tr>
<td>Summer Camp</td>
<td>9</td>
<td>16</td>
<td>14</td>
<td>45</td>
</tr>
</tbody>
</table>
Conclusion

QUESTIONS ?
This concludes The American Institute of Architects Continuing Education Systems Course