The Last Frontier: How to Design the Most Efficient Hot Water System

9th Annual North American Passive House Conference
September 10-14, 2014

Gary Klein
Gary Klein and Associates
915 Highland Pointe Drive, Suite 250
Roseville, CA 95678

Tel: 916-549-7080
Email: Gary@GaryKleinAssociates.com

Copyright 2014, Gary Klein
How Big is Hot Water in a Passive House?
The most valuable water to conserve is **hot water** at the top of the tallest building, with the highest elevation, in the area with the greatest pressure drop.
Issues We Face

• Flow rates have been reduced
• Distances to fixtures have increased
• Potential for simultaneous flow is generally overestimated
• Code requirements for minimum pipe diameters have not been revised since before flow rates were reduced
• Codes and efficiency and green programs generally focus on components, not the hot water system
• Others?
What Are We Aiming For?

• People want the service of hot water, as efficiently as possible.
• It does not make sense to discuss efficiency until the desired service has been provided.
The 2 Key Services...

Hot Water Now = “Instantaneousness”
- Need hot water available before the start of each draw.
  - A tank with hot water
  - Heated pipes
- Need the source of hot water close to each fixture or appliance
- Point of Use is not about water heater size, its about location

Never Run Out in My Shower = “Continousness”
- Need a large enough tank or a large enough burner or element
- Or, a modest amount of both
Integrating the Components into an Effective System
What Reduces Hot Water Use?

• Insulating hot water supply piping
• End uses closer to water heater(s)
• Lower flow rate plumbing fixtures
• Lower volume plumbing appliances
• Using waste heat running down the drain to preheat cold water
• Truly “Instantaneous” water heaters
• Warmer incoming cold water
• Anything else?
What Increases Hot Water Use?

• Uninsulated hot water supply piping
  – More uses start out with colder water

• End uses further from water heater(s)
  – More volume to clear

• Lower flow rate plumbing fixtures
  – Increases waste while waiting for hot water to arrive

• “Instantaneous” water heaters
  – Cold water runs through while ramping up to temp

• Colder incoming cold water
  – Increases the percent of hot water in the mix

• Anything else?
What Increases Customer Satisfaction?

• Instantaneousness
• Continuousness
• Hot water systems that are predictable and easy to “learn”
• Plumbing fixtures that provide rated flow even at low pressures
• Plumbing appliances that do their job with lower amounts of water.
• Lower energy bills for their hot water
• Anything else?
Incorporating High Performance Hot Water Systems into Our Buildings
Given What We Have Learned....

- What best practices can you come up with?
- What should become code?
  - IPC
  - IECC
  - IRC
  - UPC
  - Other?
- What should be included into HERS, Energy Star, LEED?
Best Practices

• Understand the hot water use patterns for each occupancy.
  – The key is that hot water use is generally extremely variable within and among households.
  – Hot water events are clustered together within windows of opportunity based on the schedules of the occupants.
  – Flow rates are generally low and simultaneity is much smaller than assumed in current plumbing codes

• Understand the “service(s)” of hot water desired by these occupants
  – People want Instantaneousness and Continuousness. They expect safety and reliability.
  – Provide these services in the most water and energy efficient way
**Best Practices**

- **Locate source(s) of hot water close to the uses**
  - Sometimes the source of hot water is a water heater or boiler, sometimes it is the trunk line or the supply portion of a circulation loop or a heat traced pipe.
  - Sometimes more than one water heater or more than one hot water distribution system is needed. Sometimes both.

- **Keep the volume from the source(s) to the uses small**
  - This is critical when the volume per event is small and time between events is long; for example hand washing in restrooms in office buildings.
  - New washing machines and dishwashers have flow rates while filling of less than 1.5 gpm, so they are similar to faucets and showers.
  - Fixture branch piping (twigs) should contain less than 2 cups from the trunk line to the fixture fittings or appliances.

- **Minimize pressure drop and optimize velocity in the piping**
  - Size fixture branch piping (twigs) in accordance with the flow rate of the fixture fitting or appliance that it serves.
  - Use wide radius sweeps or bend the pipe into “swoops” instead of using hard 90-degree elbows wherever possible.
Best Practices

• Insulate hot water piping
  – Insulate all of it because the patterns of use are so variable and likely to change over the life of the piping within the building.

• Provide a method to prime trunk lines with hot water shortly before use
  – Demand controlled pumping systems are the most energy efficient way to accomplish this.
  – They can be installed in a circulation loop with a dedicated return pipe or they can be installed to use the cold water line as a temporary return.

• Utilize (hot) water use efficient fixture fittings and appliances
  – Lower flow rate faucets and showers and lower fill volume washing machines and dishwashers will be more satisfactory to consumers when installed in conjunction with the hot water distribution system described above.
  – In areas with low pressure, specify pressure compensating aerators, particularly for showers.
Best Practices

• Capture waste heat from hot water running down the drain and use it to preheat incoming cold water
  – Preheat the cold water going to the water heater(s)
  – Preheat the cold water going to the shower(s)
  – Preheat the cold water going to both the water heater(s) and the shower(s)

• Combine energy requirements for water heating and space heating into one thermal engine.
  – In thermally efficient housing, which can be found in all climate zones, the emphasis should be on the water heating load
  – It is likely to be necessary to help justify the higher cost of more efficient water heating.

• Select water heaters (or boilers) matched to these uses and patterns
  – Pay attention to the lowest flow rates and the smallest volumes – which happen with great frequency – as well as to the peaks – which happen much less often.
  – Maintain this water heater so it lasts a very long time.
Entering Section of Experiment:

1. Flushing and Priming
2. Flow Rate
3. Pressure 1
4. Temperature 1
Exiting Section of Experiment:

1. Pressure 2
2. Temperature 2
3. Discharge through Plumbing Fixture
Demonstrating Performance

A.1 - Pex - 75 ft. - Uninsulated - 3/4'' dia - Red Pex

90 Seconds to 110F

1.3 gpm
1.5 gallons in the pipe
Time-to-tap:
Est. 1.5/1.3*60 = 69 seconds
Why 21 seconds more?
Demonstrating Performance

C.2 - Pex - 10ft. - Uninsulated - 1/2" dia - Red Pex

12 Seconds to 110°F

1.3 gpm
0.1 gallons in the pipe
Time-to-tap:
Est. 0.1/1.3*60 = 5 seconds
Why 7 seconds more?
Getting Better at What We Do

• Technical skills
• How to Win Friends and Influence People
  – Dale Carnegie, 1936
• How I Raised Myself from Failure to Success in Selling
  – Frank Bettger 1947
• Personality Plus-Florence Littauer 1983
• Personality Puzzle-Florence and Marita Littauer 1992
• The Great Connection-Arnie Warren 1997
• The Go-Getter-Peter Kyne 1921
• The Richest Man in Babylon-George Clason 1926
Thank You!

Gary Klein
Gary Klein and Associates
915 Highland Pointe Drive, Suite 250
Roseville, CA 95678

Tel: 916-549-7080
Email: Gary@GaryKleinAssociates.com