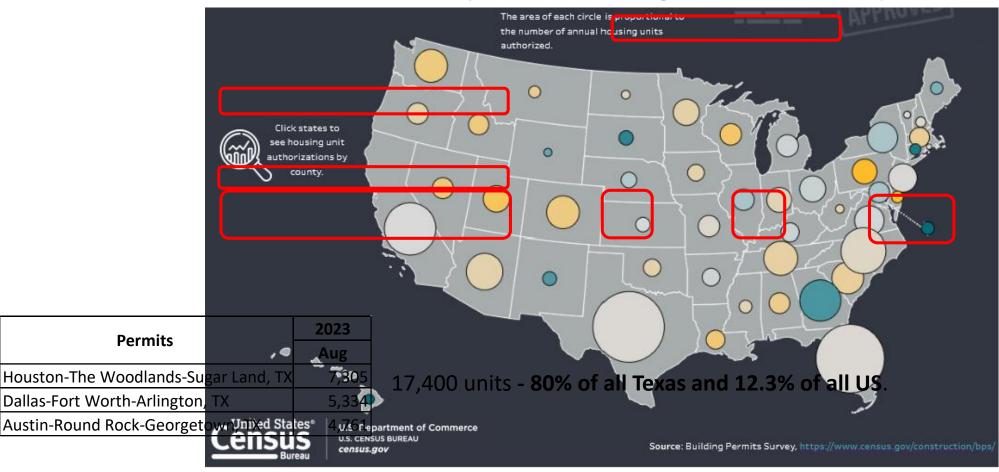
Ryan Abendroth, M.Arch., CPHC

Co-Founder and Consultant

Stefan Goebel, M.Eng., CPHC

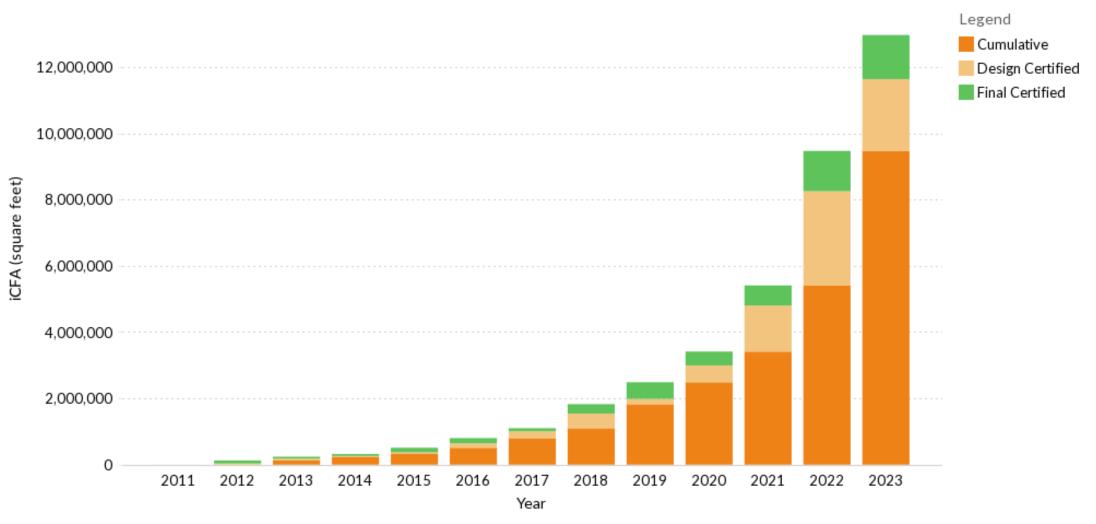
Co-Founder and Consultant

• Texas



Ophius Texas – Fact Sheet

Cities	Population Metro area	Pop. growth (past 10 yrs)	Household growth (5 yrs)	\$ Median House prices	Power Outages'08- '17	Small Building Rooftop Solar Potential in MW:
Austin	2.42 M					
Houston	7.34 M					
Dallas	7.94 M					
San Antonio	2.65M					
US Average	-					


Ophius Texas – Fact Sheet

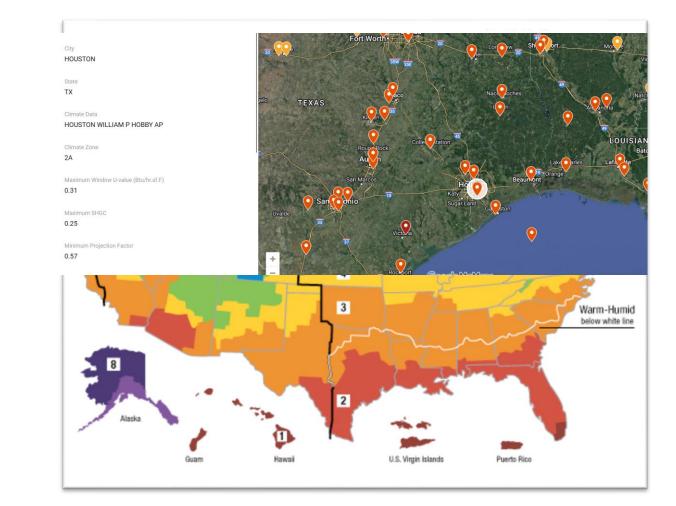
Annual New Privately Owned Housing Units Authorized by State:

Certified & Design Certified Cumulative iCFA

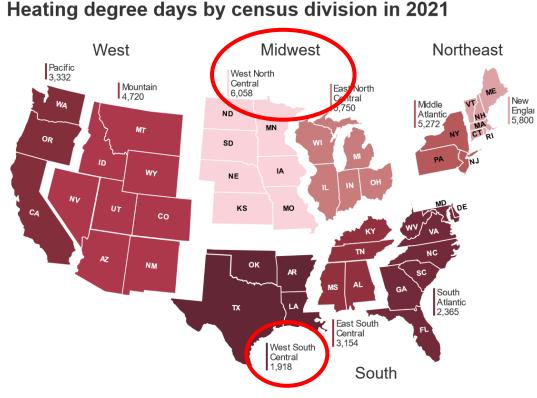
Ophius Certification Growth

Ophius Certification Growth

- Final Certified
 - Theresa Passive House; Single-Family Addition 2A,
 - Casa La Vista, Single-Family New Construction 2A
 - Blaise House, Single-Family Retrofit 2A,
- Design Certified
 - Abbate House, Single-Family New Construction 2A,
- Registered
 - Lareina Guesthouse, Single-Family New Construction 2A,
 - 1118 W 7th, Single-Family New Construction 2A,
 - Clutch City, Multi Family (Jesse Hunt) New Construction 2A,
 - Raimer Guest House, Single-Family New Construction 3A,
 - Ocean Front Villas, Single-Family New Construction 2A,
 - Kananbatch Residence, Single-Family New Construction
 - Positive Impact Homes, Single-Family New Construction


2218 sq. ft. (Austin) 2990 sq. ft. (Spicewood) 1473 sq. ft. (Austin)

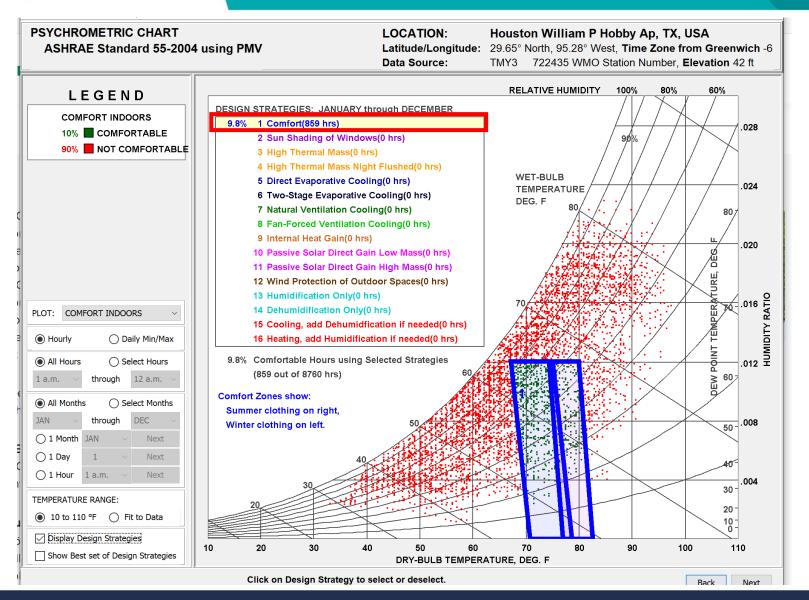
1130 sq. ft. (Austin)

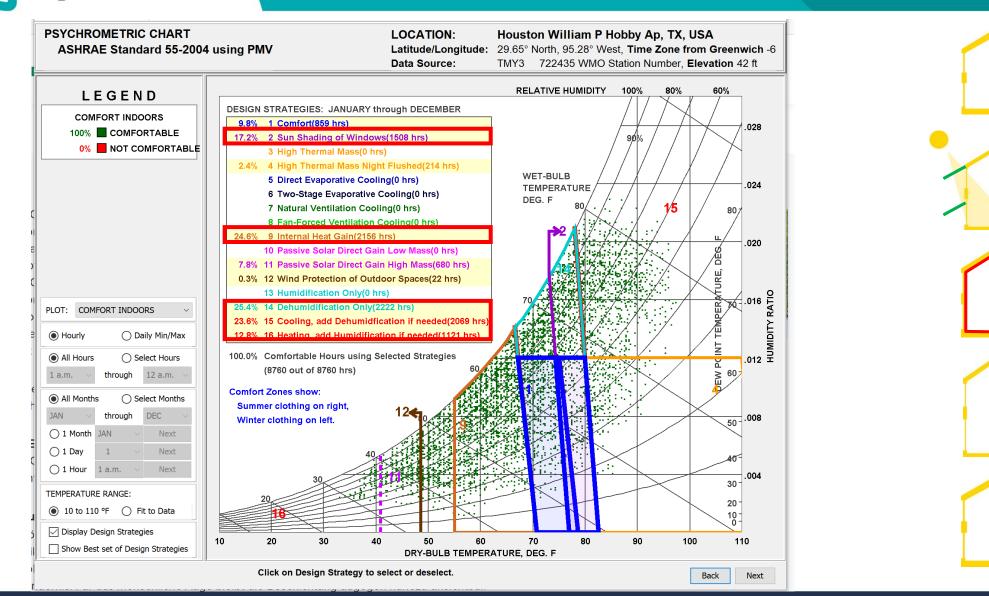

1033 sq. ft. (Austin) 5000 sq. ft. (Austin) 4674 sq. ft. (Houston) 898 sq. ft. (Celeste) (Galveston) 2399 sq. ft. (Porter) 2500 sq. ft. (Santa Fe)

• Application: 3 Projects

• Houston, TX

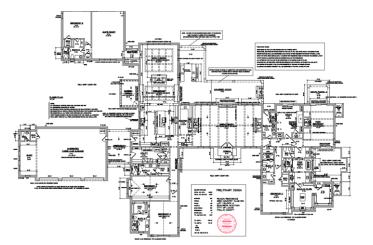
• Houston, TX

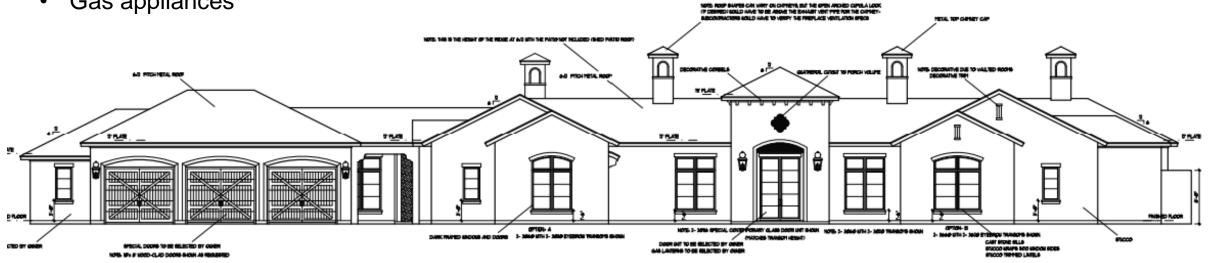



Cooling degree days by census division in 2021

Data source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.9, June 202: Cia Note: Population-weighted degree days. Pacific division includes Alaska and Hawaii.

Data source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.10, June 2022 Cia Note: Population-weighted degree days. Pacific division includes Alaska and Hawaii.





Ophius Texas Building Typologies

"Everything is bigger in Texas"

- Single Family 1 Story
- ~ 6000 sq ft
- 5 bed/7 bath
- 3 car garage ٠
- Large envelope size and multiple wings ٠
- Distributed nature of hot water use ٠
- Combustion safety 5 fireplaces ٠
- Gas appliances ٠

Ophius Phius 2021 – Prescriptive

Houston

5	Thermal Enclosure	
5.1.1a	Fenestration / Openings	Maximum Whole U-Val
5.1.1b	Walls & Overhang Floors - Effective R-value	Minimum Effective R-Val
5.1.1c	Roofs / Ceilings	Minimum Effective R-Val
5.1.1d	Whole Slab Foundations, Below-Grade Walls, Floors of Conditioned Basements & Crawl Spaces	Minimum Effective R-Val
5.1.1e	Ceilings of Unconditioned Basements or Crawl Spaces & Pier and Beam Floors	Minimum Effective R-Val

Maximum Whole U-Value	0.31	(BTU/h.ft ² .°F)
Minimum Effective R-Value	23	(ft ² .°F.h/BTU)
Minimum Effective R-Value	53	(ft ² .°F.h/BTU)
Minimum Effective R-Value	8	(ft ² .°F.h/BTU)
Minimum Effective R-Value	13	(ft ² .°F.h/BTU)

Austin

5	Thermal Enclosure			
5.1.1a	Fenestration / Openings	Maximum Whole U-Value	0.26	(BTU/h.ft ² .°F)
5.1.1b	Walls & Overhang Floors - Effective R-value	Minimum Effective R-Value	25	(ft ² .°F.h/BTU)
5.1.1c	Roofs / Ceilings	Minimum Effective R-Value	55	(ft ² .°F.h/BTU)
5.1.1d	Whole Slab Foundations, Below-Grade Walls, Floors of Conditioned Basements & Crawl Spaces	Minimum Effective R-Value	9	(ft ² .°F.h/BTU)
5.1.1e	Ceilings of Unconditioned Basements or Crawl Spaces & Pier and Beam Floors	Minimum Effective R-Value	14	(ft ² .°F.h/BTU)

Dallas

5	Thermal Enclosure			
5.1.1a	Fenestration / Openings	Maximum Whole U-Value	0.24	(BTU/h.ft ² .°F)
5.1.1b	Walls & Overhang Floors - Effective R-value	Minimum Effective R-Value	26	(ft ² .°F.h/BTU)
5.1.1c	Roofs / Ceilings	Minimum Effective R-Value	56	(ft ² .°F.h/BTU)
5.1.1d	Whole Slab Foundations, Below-Grade Walls, Floors of Conditioned Basements & Crawl Spaces	Minimum Effective R-Value	9	(ft ² .°F.h/BTU)
5.1.1e	Ceilings of Unconditioned Basements or Crawl Spaces & Pier and Beam Floors	Minimum Effective R-Value	14	(ft ² .°F.h/BTU)

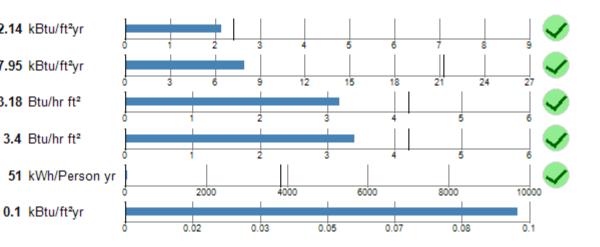
San Antonio

5	Thermal Enclosure			
5.1.1a	Fenestration / Openings	Maximum Whole U-Value	0.28	(BTU/h.ft ² .°F)
5.1.1b	Walls & Overhang Floors - Effective R-value	Minimum Effective R-Value	24	(ft ² .°F.h/BTU)
5.1.1c	Roofs / Ceilings	Minimum Effective R-Value	54	(ft ² .°F.h/BTU)
5.1.1d	Whole Slab Foundations, Below-Grade Walls, Floors of Conditioned Basements & Crawl Spaces	Minimum Effective R-Value	8	(ft ² .°F.h/BTU)
5.1.1e	Ceilings of Unconditioned Basements or Crawl Spaces & Pier and Beam Floors	Minimum Effective R-Value	13	(ft ² .°F.h/BTU)

Ophius Positive Impact Homes

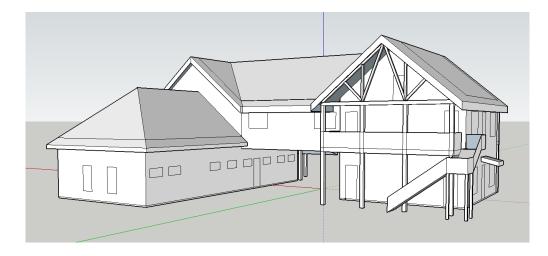
- Single Family 1 story
- Sqft: approx. 2,500
- Project Status: Permitting
- Positive Impact Homes

POSITIVE IMPACT HOMES FOR VETERANS BATTLING PTSD & SPECIAL NEEDS



Images by Stella Maris Architecture

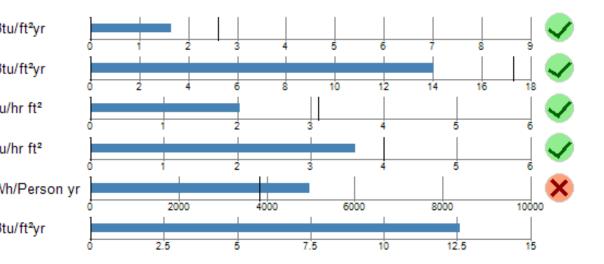
Ophius Positive Impact Homes: Criteria vs Results


Phius 2021 Performance Criteria Calculator v3.2				
UNITS:	IMP	ERIAL (IP) 🛛 🗸		
BUILDING FUNCTION:	RES	SIDENTIAL ~		
PROJECT TYPE:	NEW C			
STATE/ PROVINCE		TEXAS 🗸		
CITY	HOUST	ON WILLIAM P HC 🗸		
Envelope Area (ft²)		12,905.6		
iCFA (ft²)		3,200.0		
Dwelling Units (Count)		þ		
Total Bedrooms (Count)		4		
Space Conditioni	ng Criteria			
Annual Heating Demand	2.8	kBtu/ft²yr		
Annual Cooling Demand	19.3	kBtu/ft²yr		
Peak Heating Load	3.2	Btu/ft²hr		
Peak Cooling Load	4.2 Btu/ft ² hr			
Source Energy	Criteria			
Phius CORE	5000	kWh/person.yr		
Phius ZERO	0 kWh/person.yr			

Heating demand:	2.
Cooling demand:	7.
Heating load:	3.
Cooling load:	3
Source energy:	
Site energy:	(

Ophius Palm Street Development

- Two Unit Residence
- Sqft: Unit 1 1,950; Unit 2 3,600
- Project Status: Permitting
- SunRoof USA PV System offering 24.96 kWp (29.6k lbs/yr CO2 reduction)
- Emphasis on carbon neutral, energy positive construction practices
- Bridge above easement that connects the two residences
- Two additional 1st floor bedrooms w/ exterior entrances

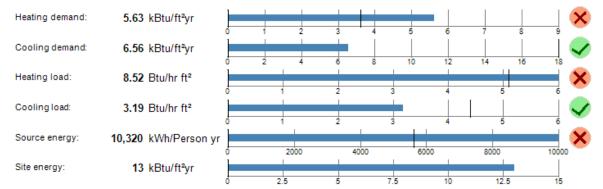


Ophius Palm Street: Criteria vs Results

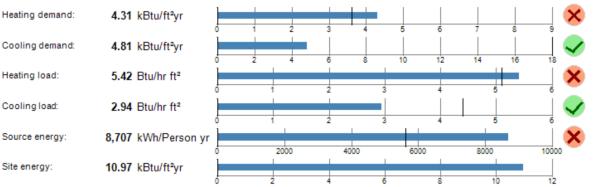
Phius 2021 Performance Criteria Calculator v3.2			
UNITS:	IMP	ERIAL (IP) 🛛 🗸	
BUILDING FUNCTION:			
PROJECT TYPE:	NEW C		
STATE/ PROVINCE	TEXAS ~		
CITY	HOUSTON WILLIAM P HC		
Envelope Area (ft ²)	16,032.0		
iCFA (ft²)	5,254.0		
Dwelling Units (Count)	2		
Total Bedrooms (Count)	5		
Space Conditioning	Criteria		
Annual Heating Demand	2.7	kBtu/ft²yr	
Annual Cooling Demand	19.1 kBtu/ft²yr		
Peak Heating Load	3.1	Btu/ft ² hr	
Peak Cooling Load	4.1 Btu/ft ² hr		
Source Energy C	riteria		
Phius CORE	5600	kWh/person.yr	
Phius ZERO	0	kWh/person.yr	

Heating demand:	1.65 kBtu/ft²yr
Cooling demand:	14.04 kBtu/ft²yr
Heating load:	2.04 Btu/hr ft ²
Cooling load:	3.61 Btu/hr ft ²
Source energy:	4,991 kWh/Perso
Site energy:	12.6 kBtu/ft²yr

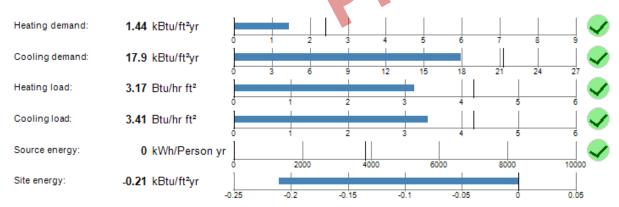
- Single Family 1 Story
- Sqft: Unit 1 9,600
- Project Status: Construction Documents
- Windows and Air Tightness (acc. ASTM E283 @75Pa Industry standard limits is at 0.3cfm/sq.ft.)
 - Casements: Results between 0.03 cfm/sq.ft. 0.06 cfm/sq.ft manufacturer lists 1.1 cfm/sq.*
 - **Double Hung**: Results between 0.1 0.24 cfm/sq.ft.
- Cost Effectiveness



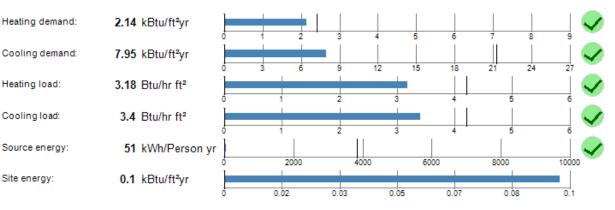
Assembly	Case 1 Minimum
Slab	Uninsulated 4" Concrete Slab = R 0.42
Walls	R13 (2x4 w/ Batt Insulation)
Roof	R38 (Not including framing)
Windows	U-Value 0.4 BTU/ft ² h F SHGC 0.25
Airtightness	ACH50: 5 per hour CFM50: 0.36 per ft ² (Envelope Area)


	Case 1
Energy Use	38993.07 kWh
Energy Cost (Monthly in \$)	\$454.92
PV Required for Zero	39,000 kWh
Estimated DC System Size	26.4 kW
Estimated Number of Panels	72

IECC 2021	CLIMATE ZONE	FENESTRATION <i>U</i> -FACTOR ^{b, i}	SKYLIGHT [♭] <i>U</i> -FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> - VALUE ^g	MASS WALL <i>R-</i> VALUE ^h	FLOOR <i>R</i> - VALUE	BASEMENT ^{c,g} WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> - VALUE & DEPTH	CRAWL SPACE ^{c,g} WALL <i>R</i> - VALUE
	2	0.40	0.65	0.25	49	13 or 0& 10ci	4/6	13	0	0	0
Austin T Code Complia		0.25	0.25	.25 cog	38	18.1	n/a	n/a	n/a	.42	n/a


Energy savings due to Air Tightness: 5376 kwh/year of site energy

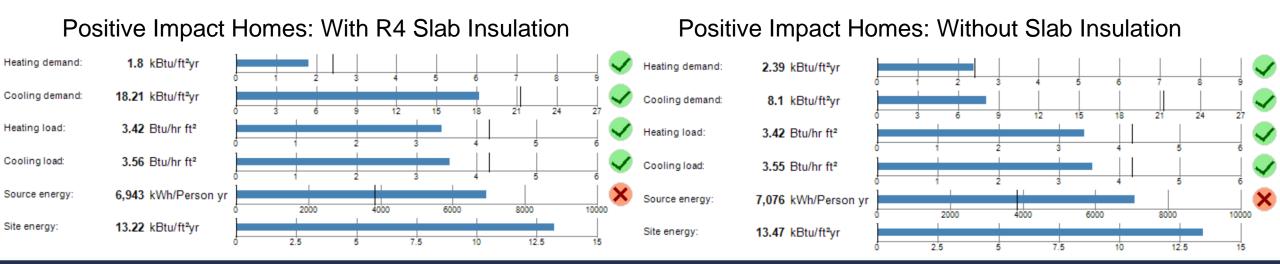
Results in a 15.6% energy savings for the building and a cost savings of \$806.40/year or \$67.20/month @ \$0.15/kwh


Ophius Slab Insulation

- In many cases, insulation continuous under the slab is not required or even recommended.
- There are some cases where approximately R-8 would provide meaningful results.
 See Phius Prescriptive Requirements
- Situations where this is the case:
 - 1. Where the building has lower internal and solar gains (benefits less from free ground contact)
 - 2. In climates where the ground temperature is lower
 - *For example: Houston vs Dallas

Positive Impact Homes: With R8 Slab Insulation

Positive Impact Homes: Without Slab Insulation

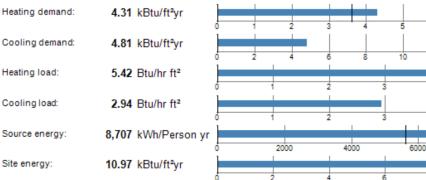

Ophius Slab Insulation Revisited

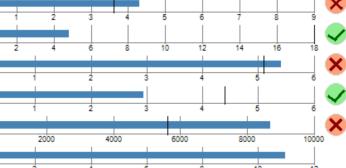
What happens when a slab is insulated? Heat loss through the slab is reduced

- In the winter, this heat loss to the ground adds to the heating demand
- In the summer, this heat loss to the cool ground is beneficial

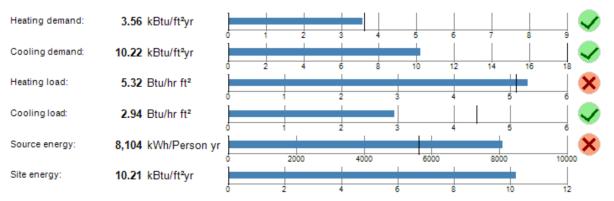
These effects can look balanced!

Note the relative similarity between the source energy in kwh.


(phius Slab Insulation: Austin


	CLIMATE ZONE	FENESTRATION <i>U</i> -FACTOR ^{b, i}	SKYLIGHT [♭] <i>U</i> -FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> - VALUE ^g	MASS WALL <i>R</i> - VALUE ^h	FLOOR <i>R</i> - VALUE	BASEMENT ^{c,g} WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> - VALUE & DEPTH	CRAWL SPACE ^{c,g} WALL <i>R</i> - VALUE
IECC 2021	2	0.40	0.65	0.25	49	13 or 0& 10ci	4/6	13	0	0	0

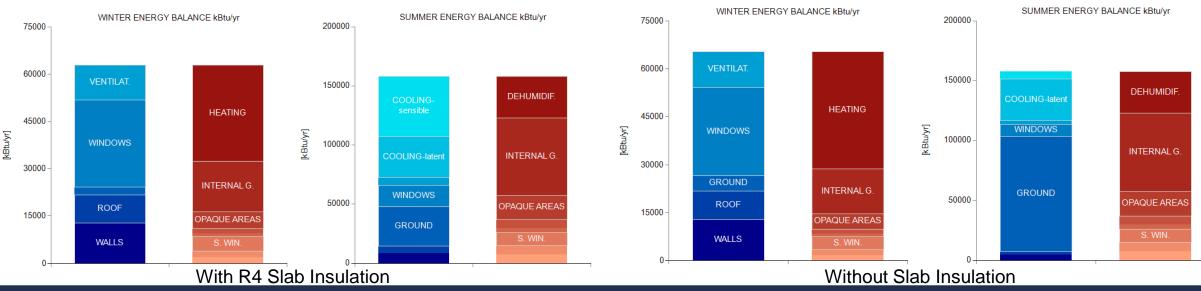
Baseline: Slab R = .42Wall R = 18.1 Roof R = 38Slab Per. = R5, 2'


Window U = 0.25Window SHGC= 0.25 Airtightness = $0.06 \text{ cfm}_{50}/\text{ft}^2$

Slab R-Value: None (.42)

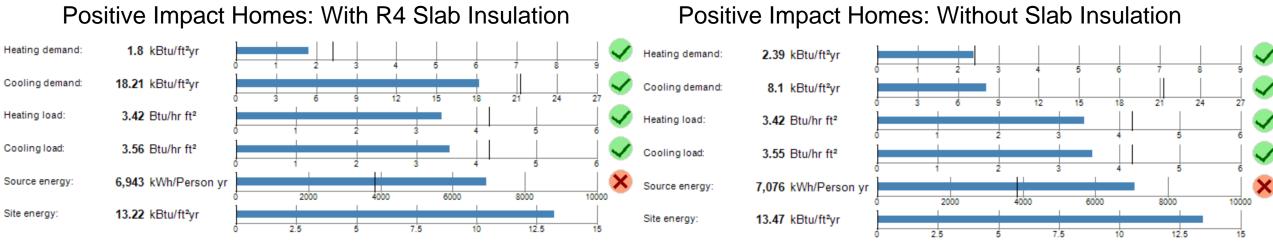
Slab R-Value: 4.42

Energy savings due to increased R-value: 2007.8 kwh/year of site energy

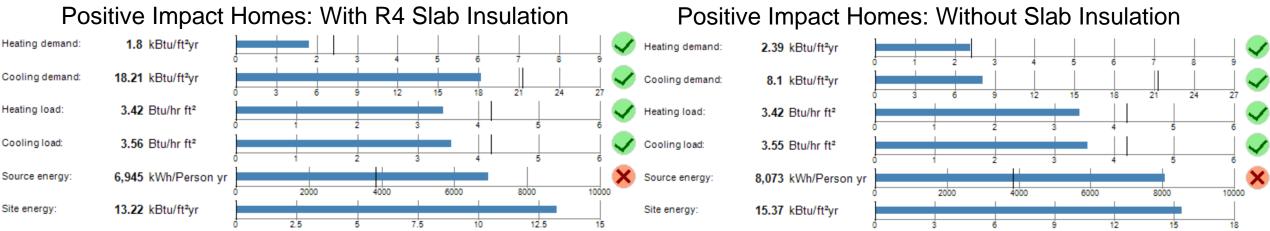

Results in a 6.92% energy savings for the building and a cost savings of \$301.17/year or \$25.10/month @ \$0.15/kwh

Ophius Slab Insulation

What happens when a slab is insulated?


Heat loss through the slab is reduced

- In the winter, this heat loss to the ground adds to the heating demand
- In the summer, this heat loss to the cool ground is beneficial
- The heat loss to the ground is sensible heat loss
- The latent heat demand stays the same, but sensible has been cut dramatically
- The demands are similar, but the efficiency of the mechanical system determines the annual source energy use!!



Ophius Slab Insulation Revisited

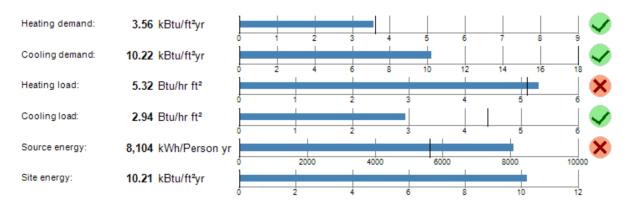
Dehumidification COP at 2

Dehumidification COP at 1.2

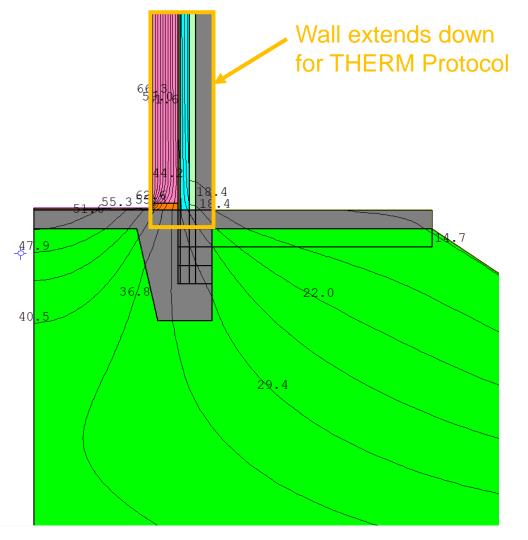
Ophius Slab Insulation: Austin

	CLIMATE ZONE	FENESTRATION <i>U</i> -FACTOR ^{b, i}	SKYLIGHT [♭] <i>U</i> -FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> - VALUE ^g	MASS WALL <i>R</i> - VALUE ^h	FLOOR <i>R</i> - VALUE	BASEMENT ^{c,g} WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> - VALUE & DEPTH	CRAWL SPACE ^{c,g} WALL <i>R</i> - VALUE
IECC 2021	2	0.40	0.65	0.25	49	13 or 0& 10ci	4/6	13	0	0	0

Baseline: Slab R = .42 Wall R = 18.1 Roof R = 38 Slab Per. = R5, 2'


Window U = 0.25 Window SHGC= 0.25 Airtightness = 0.06 cfm₅₀/ft²

Slab R-Value: None (.42)


Energy savings are due to substituting a COP of 1.2 for Dehumidification with a COP of 5.28 for Cooling

Slab R-Value: 4.42

Energy savings due to increased R-value: 2007.8 kwh/year of site energy

Results in a 6.92% energy savings for the building and a cost savings of \$301.17/year or \$25.10/month @ \$0.15/kwh

WHAT? / WHY!

- Uninsulated slabs have very little thermal resistance.
- The overlap of the wall and slab at the corner creates what is typically called double counting" of the heat loss, but in this case, it replaces concrete with additional insulation.

		U	dT	L	ULdT	error	
2D model		(btu/hr.sf.F)	(F)	(in)	btu/hr.ft	(%)	
	Exterior	0.016	54	468.27	33.72	3.36%	
	Interior	0.1029	54	73.00	33.80	3.36%	
Component		U	dT	L	ULdT	error	
		(btu/hr.sf.F)	(F)	(in)	[btu/hr.ft]	(%)	
Component A	Exterior	0.0282	54	52.00	6.60	0.00%	
Wall	Interior	0.028	54.00	52.00	6.60	0.00%	
Component B	Exterior	0.5823	27	39	51.10	1.36%	
Slab	Interior	0.5823	27.00	39.00	51.10	1.36%	
Psi		PsidT	dT	Psi	Psi for	WUFI	
		(btu/hr.ft)	(F)	(btu/hr.ft.F)	(btu/h	r.ft.F)	
	Exterior	-23.98	54.00	-0.444	-0.4		
	Interior	-23.89	54.00	-0.442	-0.4	43	

PHIUS recommends against taking negative thermal bridges in the design phase. See Thermal Bridges section in Certification Guidebook.

No Slab Edge Insulation

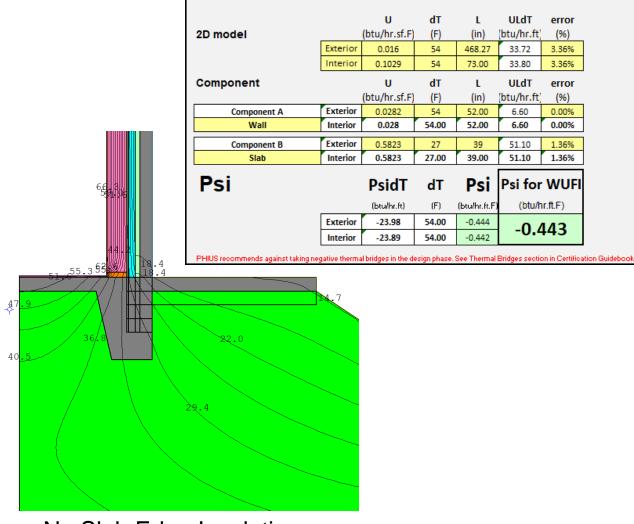
error

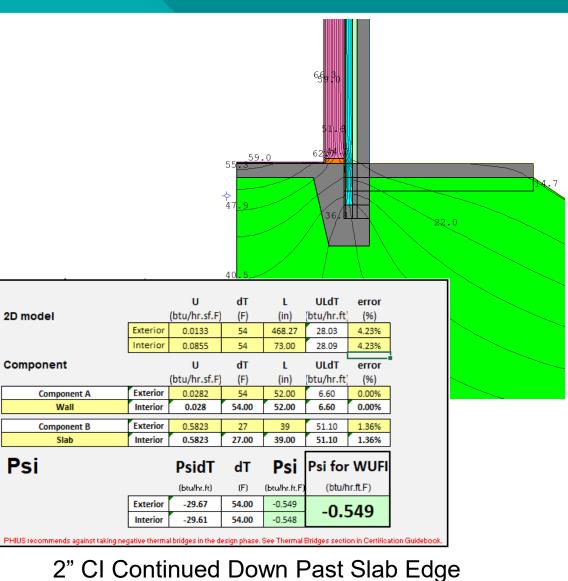
(%)

3.36%

3.36%

error


(%)


0.00%

0.00%

1.36%

1.36%

No Slab Edge Insulation

error

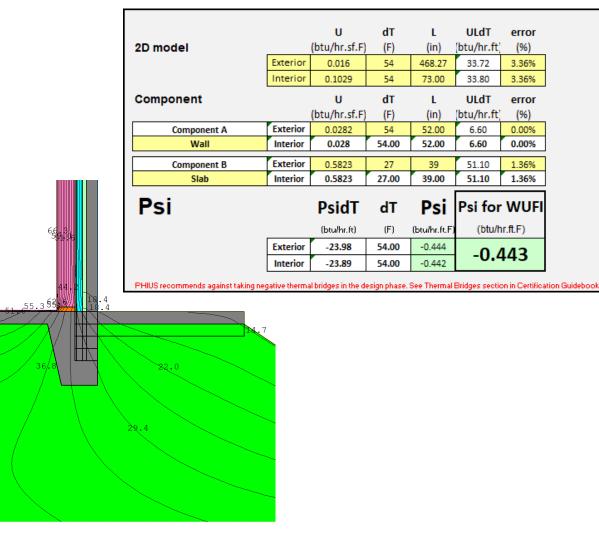
(%)

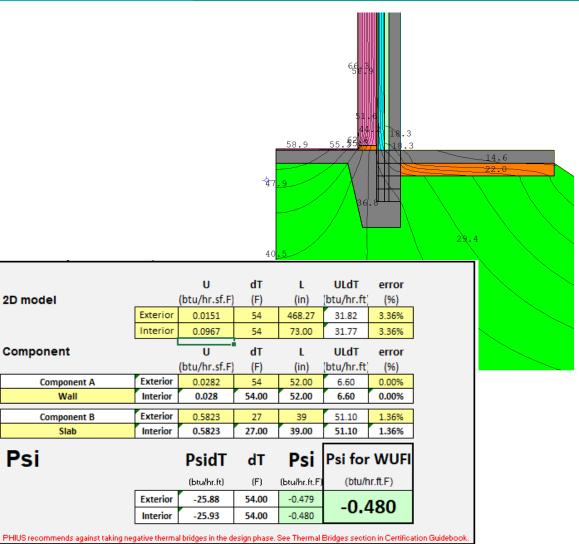
3.36%

3.36%

error

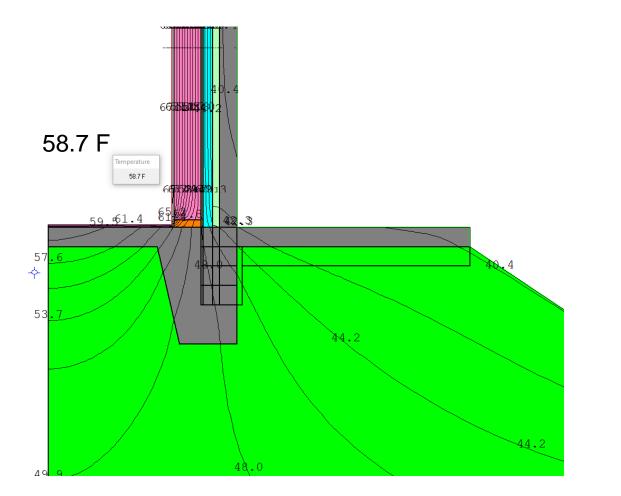
(%)

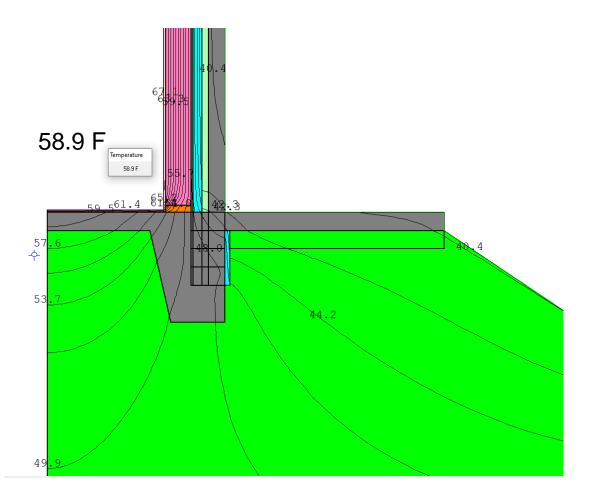

0.00%


0.00%

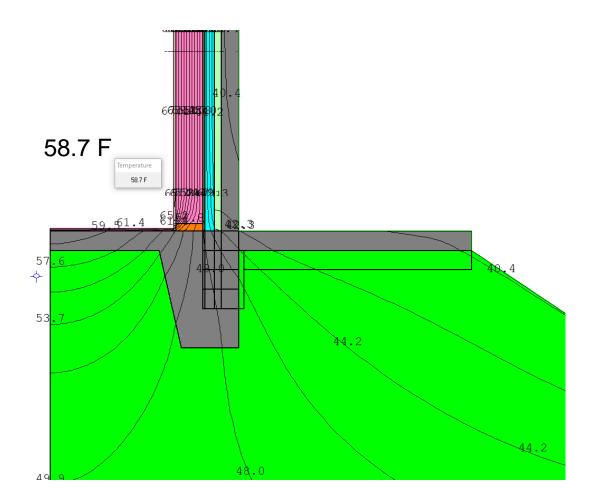
1.36%

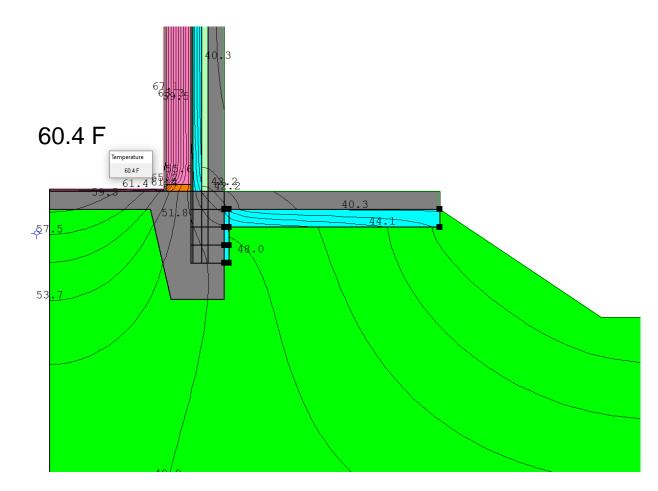
1.36%


Psi

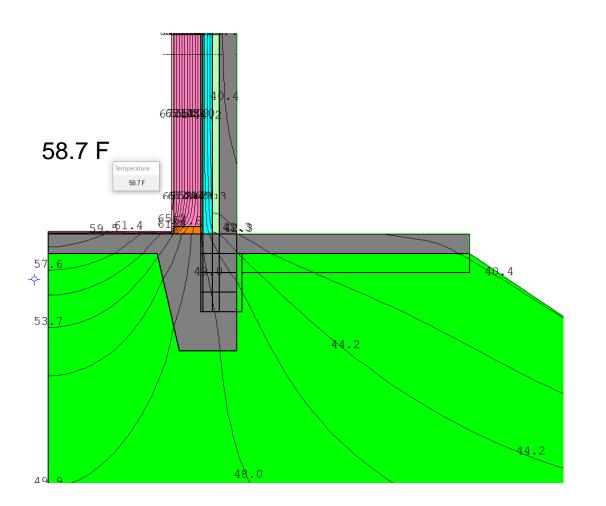


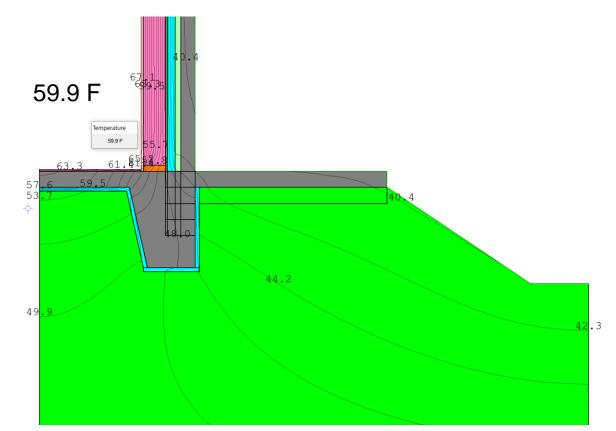
No Slab Edge Insulation


Glavel Slab Edge Insulation



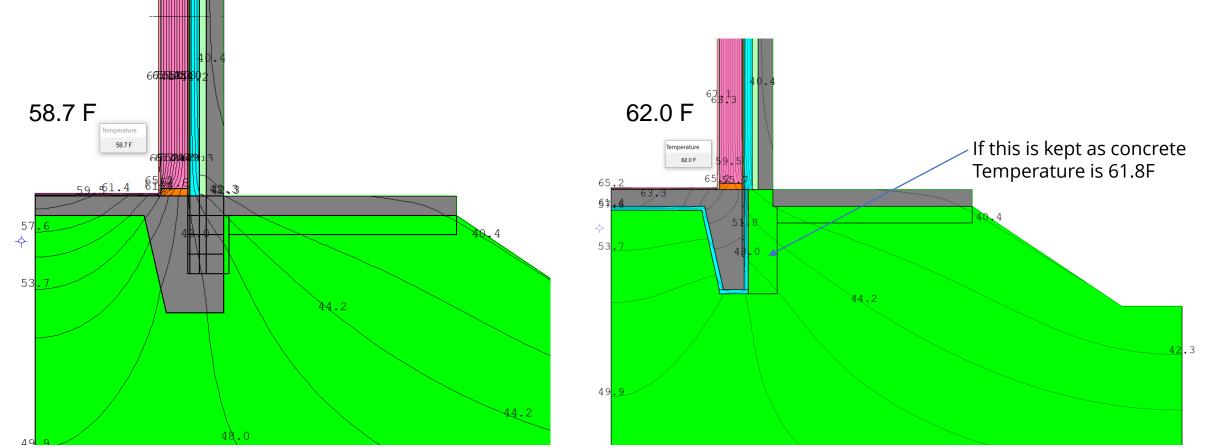
No Slab Edge Insulation


1" Slab Edge Insulation



No Slab Edge Insulation

4" of R4 EPS Adjacent to Slab Edge (1" Vertical R4 EPS)



1" of R4 Slab Insulation

1" of R4 EPS – Almost Continuous

No Slab Edge Insulation

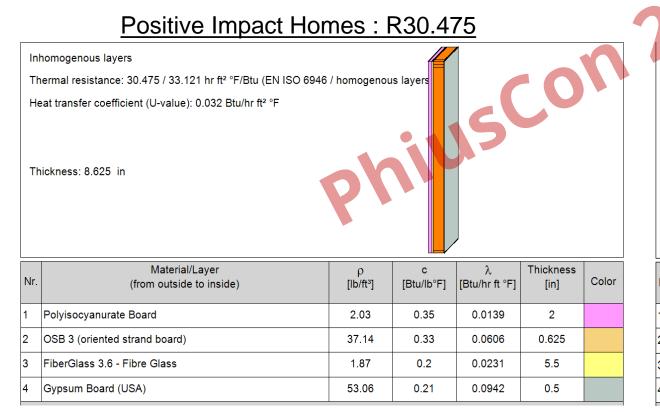
1" of R4 Slab Insulation

No Slab Edge Insulation

1" of R4 EPS – Continuous

Analyzing the climate with the Phius created ISO13788 Interior Surface fRsi Calculator v1.1

This calculator shows the temperatures are warm enough that the surface condensation risk potential should not be concern


Issues seen at slab edges in TX are (likely) related to air movement!

Cold exterior air meeting warm/humid air can cause moisture risk and damage.

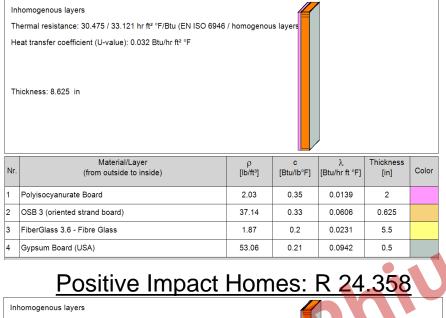
Critical Month	#DIV/0!												
Exterior temp for moisture design													
Month	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
Walls (F)	56.1	57.0	58.1	65.3	71.4	77.0	79.5	78.6	73.6	68.2	57.9	52.7	
Ground (F)	61.3	63.0	63.5	64.0	67.6	70.7	73.4	74.7	74.3	71.7	69.0	63.9	
Roof, simplified (F)	56.1	57.0	58.1	65.3	71.4	77.0	79.5	78.6	73.6	68.2	57.9	52.7	

Ophius Exterior Wall Approaches

- Target R-Values lead to "No Exotic Materials or Techniques Required"
- "4 City" range for the Prescriptive Path is: R23 R26
- Framing conservatively (accurately) modeled with a double top plate @ 16" o.c.

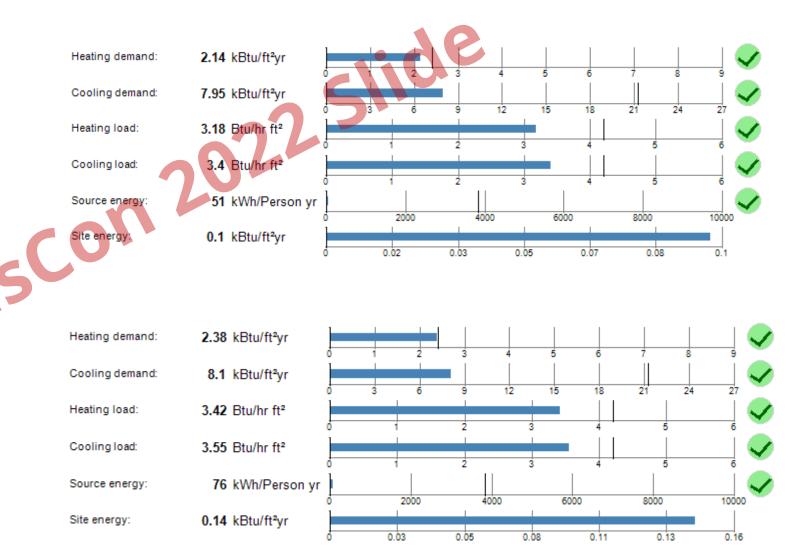
Palm Street: R 29.684

Inhomogenous layers


Thermal resistance: 29.864 / 32.935 hr ft² °F/Btu (EN ISO 6946 / homogenous laye Heat transfer coefficient (U-value): 0.032 Btu/hr ft² °F

Thickness: 9.125 in

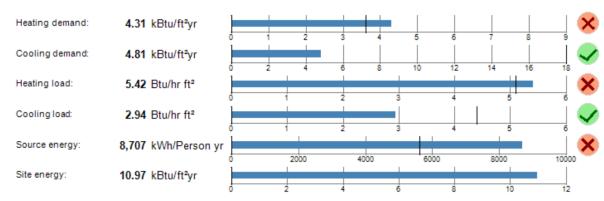
Nr.	Material/Layer (from outside to inside)	ρ [lb/ft³]	c [Btu/lb°F]	λ [Btu/hr ft °F]	Thickness [in]	Color
1	ROXUL FacadeRock	8.43	0.25	0.022	2.5	
2	Plywood (USA)	29.34	0.45	0.0485	0.5	
3	Roxul ComfortBatt	2.25	0.2	0.0208	5.5	
4	Gypsum Board (USA)	53.06	0.21	0.0942	0.625	


Ophius Exterior Wall Approaches

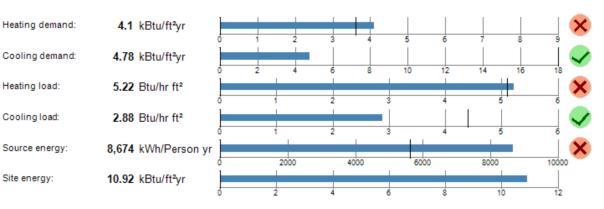
Positive Impact Homes: R30.475

Thermal resistance: 24.358 / 27.111 hr ft² °F/Btu (EN ISO 6946 / homogenous layers Heat transfer coefficient (U-value): 0.039 Btu/hr ft² °F Thickness: 7.625 in

Nr.	Material/Layer (from outside to inside)	ρ [lb/ft³]	c [Btu/lb°F]	λ [Btu/hr ft °F]	Thickness [in]	Col	
1	Polyisocyanurate Board	2.03	0.35	0.0139	1		
2	OSB 3 (oriented strand board)	37.14	0.33	0.0606	0.625		
3	FiberGlass 3.6 - Fibre Glass	1.87	0.2	0.0231	5.5		
4	Gypsum Board (USA)	53.06	0.21	0.0942	0.5		


Ophius Exterior Wall Approach: Austin

	CLIMATE ZONE	FENESTRATION <i>U</i> -FACTOR ^{b, i}	SKYLIGHT [♭] <i>U</i> -FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> - VALUE ^g	MASS WALL <i>R</i> - VALUE ^h	FLOOR <i>R</i> - VALUE	BASEMENT ^{c,g} WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> - VALUE & DEPTH	CRAWL SPACE ^{c,g} WALL <i>R</i> - VALUE
IECC 2021	2	0.40	0.65	0.25	49	13 or 0& 10ci	4/6	13	0	0	0


Baseline: Slab R = .42 Wall R = 18.1 Roof R = 38 Slab Per. = R5, 2'

Window U = 0.25 Window SHGC= 0.25 Airtightness = 0.06 cfm₅₀/ft²

Wall R-Value: 18.1

Energy savings due to increased R-value: 109.8 kwh/year of site energy

Results in a 0.38% energy savings for the building and a cost savings of \$16.47/year or \$1.3725/month @ \$0.15/kwh

Ophius Exterior Wall Approaches

Cost:

- 2x6 Framing is standard practice.
- Sheathing is standard as well
- Thin layers of CI are not standard, but fairly easy to accomplish
- 2" of foam can work well with almost all cladding materials
- Difference in cost between 2" and 1" is reasonable and can give advantages to meeting Phius Criteria (See previous slides)

Foam/No Foam

- Embodied Energy and Carbon come into play.
- Palm Street is based on a foam free assembly using rockwool
- Positive Impact Homes uses Polyisocyanurate foam
- Note: polyisocyanurate works very well in warmer climates
- Rockwool requires a thicker layer to get to equivalent R-values than some foam products.

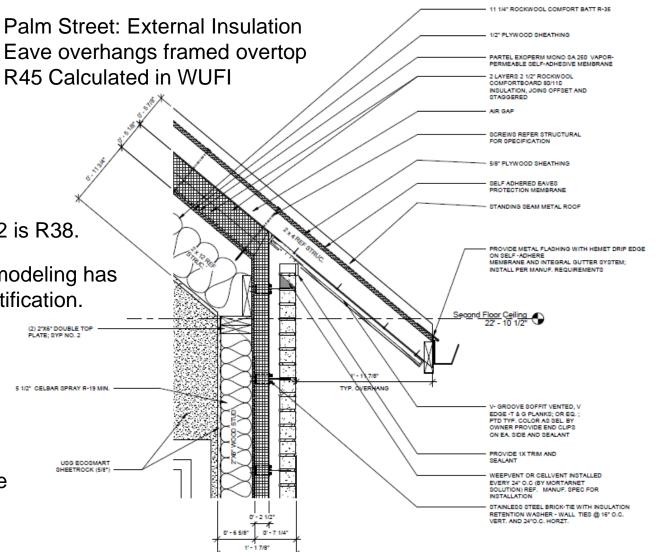
All in one panel solutions:

- ZIP R Sheathing can be an excellent solution, the R9 panel would generally meet the requirements for Phius Certification (with 2x6 insulated framing)
- EPS "nailbase" panels are also an option and have roof applications (more on this soon)

Ophius Roof Approaches

Positive Impact Homes: Insulation under the roof deck Spray polyurethane foam, AeroBarrier R40 Estimated

CLASS I VAPOR RETARDER - 1 PERM OR LESS

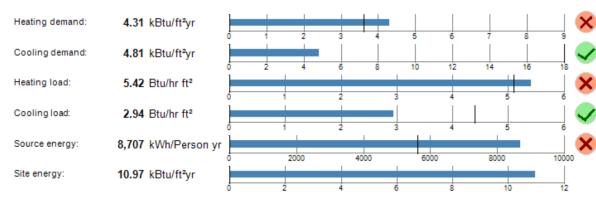

ON PLYWD SHEATHING. NO RADIANT BARRIER.

The IECC Roof Insulation * requirements for Climate Zone 2 is R38.

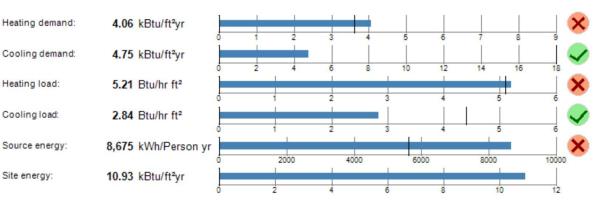
This is also very close to what modeling has shown is required for Phius Certification.

Note: The Phius Prescriptive Path requires approx. R55

CLOSED EAVE


Ophius Exterior Roof Approach: Austin

	CLIMATE ZONE	FENESTRATION <i>U</i> -FACTOR ^{b, i}	SKYLIGHT [⊳] <i>U</i> -FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> - VALUE ^g	MASS WALL <i>R</i> - VALUE ^h	FLOOR <i>R</i> - VALUE	BASEMENT ^{c,g} WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> - VALUE & DEPTH	CRAWL SPACE ^{c,g} WALL <i>R</i> - VALUE
IECC 2021	2	0.40	0.65	0.25	49	13 or 0& 10ci	4/6	13	0	0	0


Baseline: Slab R = .42 Wall R = 18.1 Roof R = 38 Slab Per. = R5, 2'

Window U = 0.25 Window SHGC= 0.25 Airtightness = 0.06 cfm₅₀/ft²

Roof R-Value: 38

Roof R-Value: 49

Energy savings due to increased R-value: 106.3 kwh/year of site energy

Results in a 0.37% energy savings for the building and a cost savings of \$15.95/year or \$1.33/month @ \$0.15/kwh

Ophius Project Teams

Where are all the Rater/Verifiers?

Grand total of: 3 Phius Raters in Texas 1 each in Houston (not active), Austin, Dallas 0 Phius Verifiers in Texas

Builders?

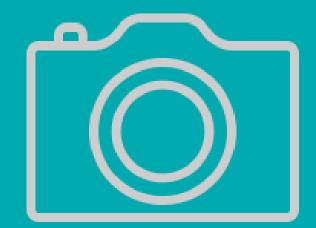
If we remove the listings with 3+ States served, there are: 11 Phius Certified Builders in Texas

Thank You!

We have additional data on windows, ventilation systems, hot water, PV integration, etc.! Let's meet to discuss!

Ryan Abendroth, M.Arch, CPHC **Stefan Goebel,** M.Eng., CPHC *Co-Founder and Consultant Co-Founder and Consultant*

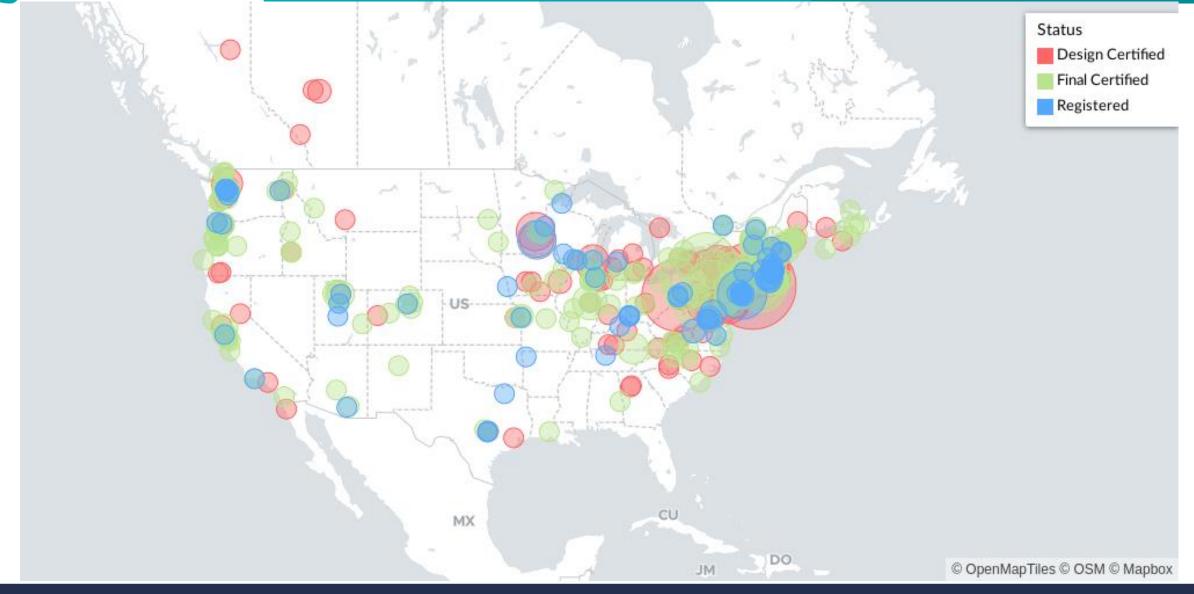
Back Up

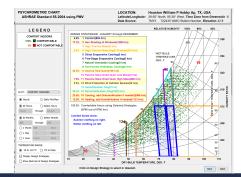

© Phius 2021

Phius CORE Prescriptive 2021 Snapshot

		Input or select da	ata in teal cells	Input or select da	ta in teal cells
	State	NEW YORK ~		TEXA	; v
	City	NEW YORK LAGUARDIA ARPT ~		HOUSTON WILLIA	
	ASHRAE (169-2021) Climate	44		2A	
	Zone		-	20	
	iCFA* (ft ²)	250	0	2500)
	Number of Bedrooms*	4		4	
	Number of Stories	2		2	
		"per dwelling unit		'per dwelling unit	
1 General					
1.1.2 iCFA divided by Number of Bedrooms	Maximum Limit	900	ft ²	900	ft ²
(Calculated Value based on Inputs)	OK, Meets Limit	625	ft ²	625	ft ²
3 Compactness			_		,
3.1.1 Envelope Area	Maximum	6946	ft ²	6946	ft ²
(Maximum Envelope to Floor Area Ratio)		2.78		2.78	
4 Solar Protection			-1		,
4.1.1 Whole Window SHGC	Maximum	0.40		0.25	
4.4.1 Projection Factor for Fixed Overhangs	Minimum	NR		0.57	
5 Thermal Enclosure					,
5.1.1a Fenestration / Openings	Maximum Whole U-Value	0.20	(BTU/h.ft ² .°F)	0.31	(BTU/h.ft ² .°F)
5.1.1b Walls & Overhang Floors - Effective R-value	Minimum Effective R-Value	36	(ft ² .°F.h/BTU)	23	(ft ² .°F.h/BTU)
5.1.1c Roofs / Ceilings	Minimum Effective R-Value	67	(ft ² .°F.h/BTU)	53	(ft ² .°F.h/BTU)
5.1.1d Whole Slab Foundations, Below-Grade Walls, Floors of Conditioned Basements & Crawl Spaces	Minimum Effective R-Value	17	(ft ² .°F.h/BTU)	8	(ft ² .°F.h/BTU)
5.1.1e Ceilings of Unconditioned Basements or Crawl	Minimum Effective R-Value	22	(ft ² .°F.h/BTU)	13	(ft ² .°F.h/BTU)
Spaces & Pier and Beam Floors	Minimum Effective R-value	22	(ft=:"F.N/BTU)		(IL . P.II/BTO)
6 Moisture Risk Limitation					,
6.2.1 Fenestration Condensation Resistance	Minimum	60%		65%	
7 Mechanical Ventilation					
7.2.1 Sensible Recovery Efficiency, Heating Mode	Minimum	76%		NR	
7.2.2 Total Recovery Efficiency, Cooling Mode	Minimum	50%		60%	
7.2.5 Total Length of Fresh Air Ducts to Outside	Maximum	28	ft	28	ft
8 Mechanical Systems					
Select System Type					1
8.2.1 Air Source Heat Pump ~	Minimum COP @ 5F Minimum SEER	1.8 15.0		9.6 18.0	

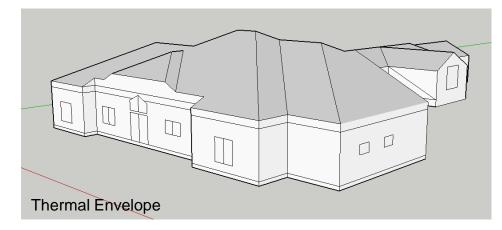
Phius CORE Prescriptive **Snapshot**


(www.phius.org)


© Phius 2021

Ophius Certification Growth

Ophius Hot and Humid Texas


- 20 Provide double pane high performance glazing (Low-E) on west, north, and east, but clear on south for maximum passive solar gain
- 59 In this climate air conditioning will always be needed, but can be greatly reduced if building design minimizes overheating
- **19** For passive solar heating face most of the glass area south to maximize winter sun exposure, but design overhangs to fully shade in summer
- 65 Traditional passive homes in warm humid climates used high ceilings and tall operable (French) windows protected by deep overhangs and verandahs
- **18** Keep the building small (right-sized) because excessive floor area wastes heating and cooling energy
- 37 Window overhangs (designed for this latitude) or operable sunshades (awnings that extend in summer) can reduce or eliminate air conditioning
- 68 Traditional passive homes in hot humid climates used light weight construction with openable walls and shaded outdoor porches, raised above ground
- 17 Use plant materials (bushes, trees, ivy-covered walls) especially on the west to minimize heat gain (if summer rains support native plant growth)
- 38 Raise the indoor comfort thermostat setpoint to reduce air conditioning energy consumption (especially if occupants wear seasonally appropriate clothi...
- 3 Lower the indoor comfort temperature at night to reduce heating energy consumption (lower thermostat heating setback) (see comfort low criteria)
- **4** Extra insulation (super insulation) might prove cost effective, and will increase occupant comfort by keeping indoor temperatures more uniform
- 56 Screened porches and patios can provide passive comfort cooling by ventilation in warm weather and can prevent insect problems
- 33 Long narrow building floorplan can help maximize cross ventilation in temperate and hot humid climates
- 35 Good natural ventilation can reduce or eliminate air conditioning in warm weather, if windows are well shaded and oriented to prevailing breezes
- **46** High Efficiency air conditioner or heat pump (at least Energy Star) should prove cost effective in this climate
- 16 Trees (neither conifer or deciduous) should not be planted in front of passive solar windows, but are OK beyond 45 degrees from each corner
- **25** In wet climates well ventilated attics with pitched roofs work well to shed rain and can be extended to protect entries, porches, verandas, outdoor work ...
- **43** Use light colored building materials and cool roofs (with high emissivity) to minimize conducted heat gain
- 5 Carefully seal building to minimize infiltration and eliminate drafts, especially in windy sites (house wrap, weather stripping, tight windows)
- **15** High Efficiency furnace (at least Energy Star) should prove cost effective

Ophius Positive Impact Homes

The thermal envelope area is not overly large in plan, but there is a conditioned space over the attic that greatly adds to the overall envelope to iCFA ratio.

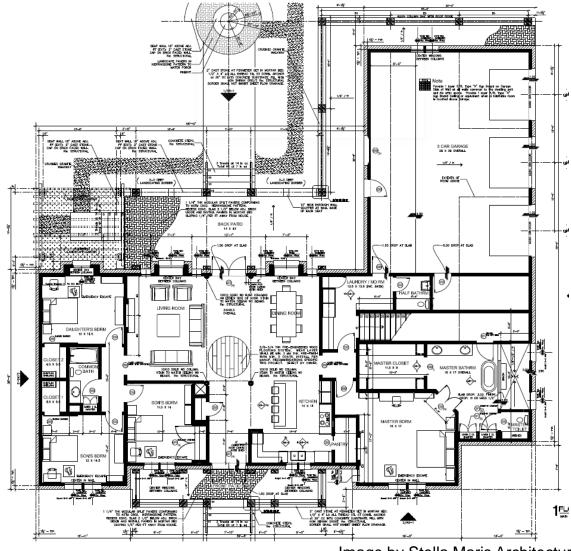


Image by Stella Maris Architecture

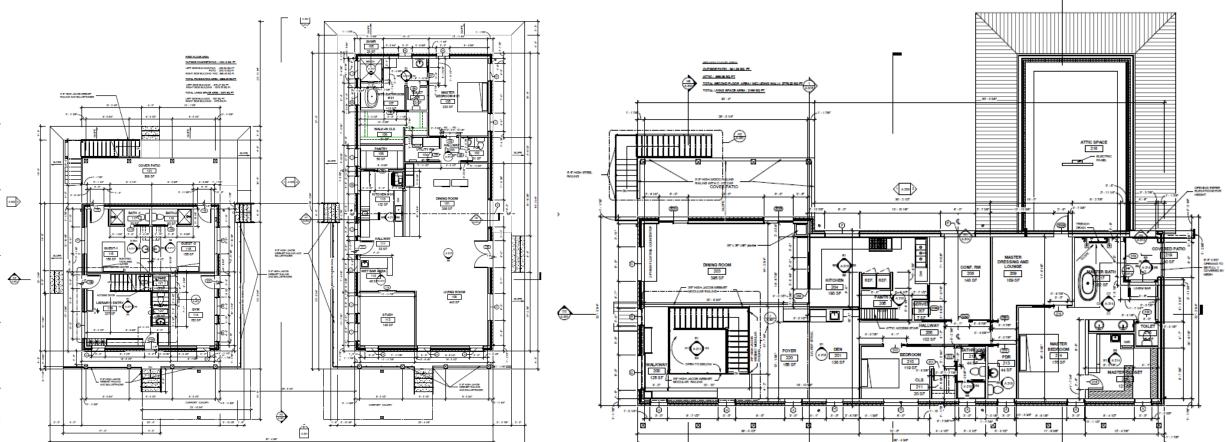
Ophius Positive Impact Homes: Criteria

Phius 2021 Performance Criteria Calculator v3.2					
UNITS:	IMPERIAL (IP) 🔷				
BUILDING FUNCTION:	RESIDENTIAL ~				
PROJECT TYPE:	NEW CONSTRUCTION				
STATE/ PROVINCE	TEXAS 🗸				
CITY	HOUSTON WILLIAM P HC -				
F					
Envelope Area (ft ²)		12,905.6			
iCFA (ft²)		3,200.0			
Dwelling Units (Count)		þ			
Total Bedrooms (Count)		4			
Space Conditioning	g Criteria				
Annual Heating Demand	2.8	kBtu/ft²yr			
Annual Cooling Demand	19.3	kBtu/ft²yr			
Peak Heating Load	3.2	Btu/ft²hr			
Peak Cooling Load	4.2	Btu/ft²hr			
Source Energy C	Criteria				
Phius CORE	5000	kWh/person.yr			
Phius ZERO	0	kWh/person.yr			

PHIUS+ 2018 Space Conditioning Criteria Calculator v2						
METHOD: UNITS:			ULATOR RIAL (IP)	~ ~		
STATE / PROVINCE			EXAS	•		
CITY Envelope Area (ft²) / iCFA (ft²)	4.03	or enter here:	ILLIAM P HOBE			
iCFA (ft²) / person	640	or enter here:	640			

*Calculator method is used for official certification targets

Space Conditioning Criteria				
Annual Heating Demand	3.4	kBTU/ft²yr		
Annual Cooling Demand	24.3	kBTU/ft²yr		
Peak Heating Load	3.1	BTU/ft ² hr		
Peak Cooling Load	5.7	BTU/ft²hr		


Typed entry will override sliding scale.

The results of the CALCULATOR method take precedence over the ESTIMATOR method.

Ophius Palm Street Development

1st Floor

2nd Floor

Images courtesy of Mint Homes / Raj Development Corporation

Ophius Palm Street: Criteria

Phius 2021 Performance Criteria Calculator v3.2					
UNITS:	IMPERIAL (IP)				
BUILDING FUNCTION:	RES	SIDENTIAL ~			
PROJECT TYPE:	NEW C				
STATE/ PROVINCE	TEXAS 🗸				
CITY					
		40,000,0			
Envelope Area (ft²)	16,032.0				
iCFA (ft²)		5,254.0			
Dwelling Units (Count)		2			
Total Bedrooms (Count)		5			
Space Conditioning	Criteria				
Annual Heating Demand	2.7	kBtu/ft²yr			
Annual Cooling Demand	19.1	kBtu/ft²yr			
Peak Heating Load	3.1	Btu/ft ² hr			
Peak Cooling Load	4.1	Btu/ft ² hr			
Source Energy C	riteria				
Phius CORE	5600	kWh/person.yr			
Phius ZERO	0	kWh/person.yr			

phius 2021 Performance Criteria Calculator v2					
UNITS:	IMF	PERIAL (IP) 🛛 👻			
BUILDING FUNCTION:	RE				
PROJECT TYPE:	NEW C				
		TEVAS			
STATE/ PROVINCE		TEXAS 🗸			
CITY	HOUST	on William P H(🗸			
Envelope Area (ft ²)		16,032			
iCFA (ft²)		5,254			
Dwelling Units (Count)		2			
Total Bedrooms (Count)		5			
Space Conditionin	ng Criteria				
Annual Heating Demand	2.6	kBtu/ft²yr			
Annual Cooling Demand	17.3	kBtu/ft²yr			
Peak Heating Load	3.1	Btu/ft²hr			
Peak Cooling Load	4.0	Btu/ft²hr			
Source Energy	Criteria				
phius CORE	5612	kWh/person.yr			
phius ZERO	0	kWh/person.yr			

PHIUS+ 2018 Space Conditioning Criteria Calculator v2						
METHOD:		CALC	ULATOR	~		
UNITS:			rial (IP)	~		
STATE / PROVINCE		TE	EXAS	•		
CITY		HOUSTON W	ILLIAM P HOB	B) 🗸		
Envelope Area (ft²) / iCFA (ft²)	3.05	or enter here:	3.05			
iCFA (ft²) / person	751	or enter here:	751			
*Calculator method is used for official certification targets.						

	-			
Space Conditioning Criteria				
Annual Heating Demand	3.3	kBTU/ft²yr		
Annual Cooling Demand	23.8	kBTU/ft²yr		
Peak Heating Load	3.0	BTU/ft ² hr		
Peak Cooling Load	5.6	BTU/ft ² hr		

Typed entry will override sliding scale.

The results of the CALCULATOR method take precedence over the ESTIMATOR method.

Ophius Phius 2018 (+V2) vs Phius 2021

Phius 2021 Performance Criteria Calculator v3.2					
UNITS:	IMPERIAL (IP) 🗸				
BUILDING FUNCTION:	RES	SIDENTIAL -			
PROJECT TYPE:					
STATE/ PROVINCE	TEXAS ~				
CITY	HOUSTON WILLIAM P HC -				
Envelope Area (ft²)	16,032.0				
iCFA (ft²)		5,254.0			
Dwelling Units (Count)		2			
Total Bedrooms (Count)		5			
Space Conditioning	g Criteria				
Annual Heating Demand Annual Cooling Demand Peak Heating Load	2.7 19.1 3.1	kBtu/ft²yr kBtu/ft²yr Btu/ft²hr			
Peak Cooling Load	4.1	Btu/ft²hr			
Source Energy C	riteria				
Phius CORE Phius ZERO	5600 0	kWh/person.yr kWh/person.yr			

phius 2 Performance Criter		or v2
UNITS:	IMP	PERIAL (IP) 🗸
BUILDING FUNCTION:	RE	
PROJECT TYPE:	NEW C	
STATE/ PROVINCE		TEXAS ~
CITY	HOUST	on William P HC 🗸
Envelope Area (ft ²)		16,032
iCFA (ft²)		5,254
Dwelling Units (Count)		2
Total Bedrooms (Count)		5
Space Condition	ing Criteria	
Annual Heating Demand	2.6	kBtu/ft²yr
Annual Cooling Demand	17.3	kBtu/ft²yr
Peak Heating Load	3.1	Btu/ft ² hr
Peak Cooling Load	4.0	Btu/ft²hr
Source Energy	Criteria	
phius CORE	5612	kWh/person.yr
phius ZERO	0	kWh/person.yr

PHI Space Conditioni	US+ 20 ng Crite		ator v2	
METHOD:		CALC	ULATOR	~
UNITS:		IMPE	RIAL (IP)	~
STATE / PROVINCE		Т	EXAS	~
CITY		HOUSTON W	ILLIAM P HOB	B) 🗸
Envelope Area (ft²) / iCFA (ft²)	3.05	or enter here:	3.05	
iCFA (ft²) / person	751	or enter here:	751	
*Calculator method is used for official c	ertification ta	argets.		

Space Conditioning	g Criteria	
Annual Heating Demand	3.3	kBTU/ft²yr
Annual Cooling Demand	23.8	kBTU/ft²yr
Peak Heating Load	3.0	BTU/ft ² hr
Peak Cooling Load	5.6	BTU/ft²hr

Typed entry will override sliding scale.

The results of the CALCULATOR method take precedence over the ESTIMATOR method.

Cooling has tightened significantly while heating has tightened marginally. Source Energy is just different!

Performance criteria for windows in a predominately cooling climate are highly varied. Like in colder climates, the best thing to do is to have excellent shading control for passive solar gain in the winter and complete shading in the summer.

U-values in the Prescriptive Path vary from: U 0.24 (Dallas) to U 0.31 (Houston) The WUFI model results shown to this point vary from U 0.2 to U 0.25

Glazing specifications is still a balance as it gets cold enough to warrant some passive solar gain, but for the majority of the year strategies to limit gain is best.

Limit West Windows North Windows

SHGC vs U-value vs Shading

The better shading you have, the higher SHGC would be possible. SHGC is VERY Important. In testing, a SHGC reduction from .3 to .25 allowed the window to go from U .2 to U .5 and achieve the same cooling demand. Heating Performance suffered in the above example.

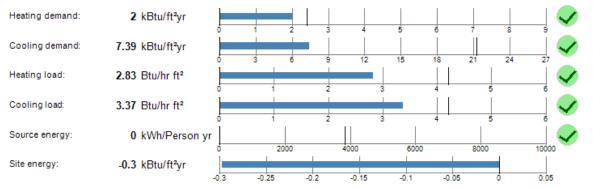
Triple Pane windows for acoustics, better performance, etc. Watch code requirements for SHGC (NFRC vs Center of Glass)

Ophius Comfort in Cooling Climates

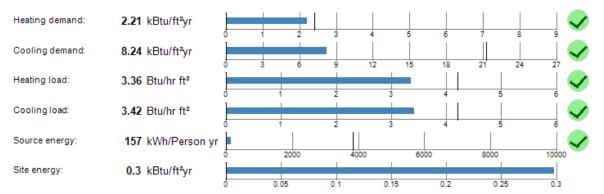
- With a high degree of certainty, I will state that Point Source Cooling is NOT EFFECTIVE (while point source heating often is – or can be)
- Distribution of cooling energy (and probably heating energy too) should be ducted to each room Central AHU not necessarily required.
 - Ducted mini-splits with short runs located in conditioned attic may be sufficient pending overall design constraints.

Dedicated Dehumidification should be provided.

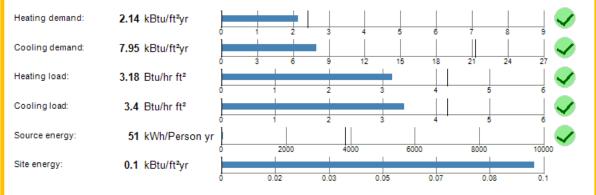
Questions - that need some more clarifying, discussion, or research:

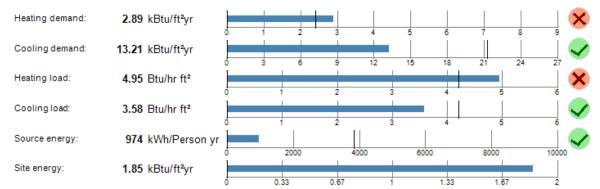

- Impact of glass surface temperature for thermal comfort "Mean Radiant Temperature"
- Effects of air leakage, stratification and air movement.

Ceiling fans being planned for in both projects.



Baseline Target



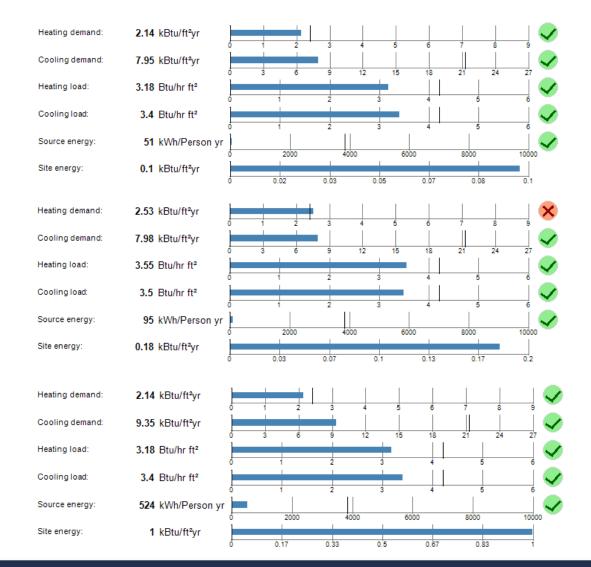

0.06 CFM50 / .97 ACH

0.05 CFM50 / .81 ACH

0.15 CFM50 / 2.42 ACH

Baseline:

Sensible recovery efficiency [-]	.8
Humidity recovery efficiency [-]	.68
Electric efficiency [W/cfm]	.5


Lower Sensible Recovery:

Sensible recovery efficiency [-]	.6
Humidity recovery efficiency [-]	.68
Electric efficiency [W/cfm]	.5

Lower Humidity Recovery:

Sensible recovery efficiency [-]	.8
Humidity recovery efficiency [-]	.5
Electric efficiency [W/cfm]	.5

Zero Humidity Recovery = Cooling Demand @ 13.4 kBtu/ft²yr!

Large buildings and slab on grade construction leads to longer DHW piping runs and wait times for hot water (ZERH requirement can be challenging).

> Preference to: On-demand recirculation systems Instantaneous water heaters for specific locations

Hot water heaters sometimes located in attics to save space on main floor

Heat Pump Water Heater inside vs Split system:

Non-Split HPWH provide free cooling inside the project. This is a big advantage compared to the split system.

The cost is substantially less as well and easier to replace.

Acoustics and cold air distribution / location of the HPWH are a concern.

System Requirements:

Heating, Cooling, Dehumidification

Both projects plan on using Mini-Split Heat Pump technologies as the primary heating and cooling system.

Dehumidification is being specified using a dedicated dehumidifier and duct system

Positive Impact Homes is specifying an additional air filtration system in addition to the filters on the rest of the mechanical equipment

Electrification

Both projects are pursuing full electrification, but there are some issues.

Backup Energy

A main drawback to full electrification is the requirement for backup and resiliency. This is especially a concern regarding recent events with grid outages during frosts and hurricane season.

For this reason, Positive Impact Homes has been specifying Natural Gas supply or Propane Tank for a backup generator.

Ophius System Considerations

PV Potential:

Houston: 20	deg Tilt	Houston: 40deg Tilt
Houston Tx » Change Location	English HELP FEEDBACK Español	English HELP FEEDBACK Español
	RESULTS	RESULTS
RESULTS	14,113 kWh/Year* n 13,653 to 14,493 kWh per year near this location. Click HERE for more information.	13,534 to 14,366 kWh per year near this location. Click HERE for more information.
Month	AC Energy	AC Energy (kWh)
January	901	1,024
February	956	1,041
March	1,196	1,204
April	1,303	1,224
Мау	1,346	1,191
June	1,337	1,146
July	1,343	1,178
August	1,311	1,211
September	1,271	1,260
October	1,239	1,324
November	992	1,121
December	917	1,063
Annual	14,112	13,987

Chicago: 40deg Tilt

DATA SYSTEM INFO RESULT 133,2 m output may range from 12,724 to Solar Radiation (kWh / m ² / day) 2.96	291 kWh/Year 13,848 kWh per year near this locati Click HERE for more informati AC Energy (kWh) 797
m output may range from 12,724 to Solar Radiation (kWh / m ² / day)	13,848 kWh per year near this locati Click HERE for more informati AC Energy (kWh) 797
m output may range from 12,724 to Solar Radiation (kWh / m ² / day)	13,848 kWh per year near this locati Click HERE for more informati AC Energy (kWh) 797
Solar Radiation (kWh/m ² /day)	Click HERE for more information AC Energy (kWh) 797
(kWh / m ² / day)	(kWh) 797
	797
2.96	
3.87	912
4.79	1,209
5.38	1,292
5.41	1,299
5.94	1,336
6.06	1,371
5.91	1,330
5.47	1,214
	1,045
4.32	
4.32 3.30	815
	5.47 4.32