

Passive to **POSITIVE**

PASSIVE HOUSE AND LOW IMPACT DESIGN

MICHAEL HINDLE, CPHC – Owner, Principal michael@passivetopositive.com 240-431-1281

ANDY ALLWINE, AIA, CPHC andy@passivetopositive.com

EAGLE ROCK

DEVELOPER / BUILDER: DMITRY BASKIN

ARCHITECT: RODE

STRUCTURAL: TLH CONSULTING

MEP: TBD - DESIGN/BUILD CPHC: PASSIVE TO POSITIVE

Passive to Positive
Passive House and Low IMPACT DESIGN

SINGLE FAMILY DEVELOPMENT - 3 BUILDING TYPES ACROSS 17 SITES

PROJECT PRIORITIES:

CONSISTENCY OF CONSTRUCTION ACROSS BUILDING TYPES

Variety of building form aesthetic within standardization

PASSIVE HOUSE INTEGRATION

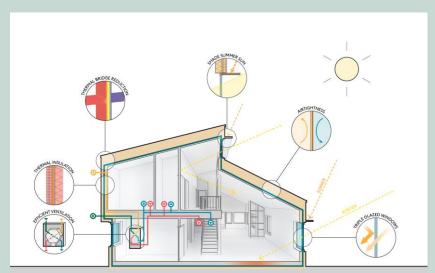
Passive House consultants included from the beginning

INTEGRATED DESIGN & CONSTRUCTION TEAM

Experienced architect & developer with immediate past project experience

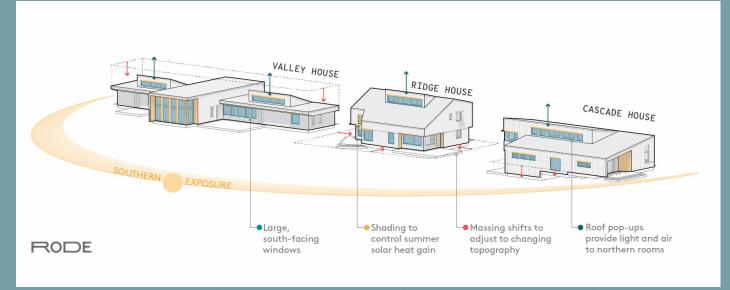
INTEGRATION BONUS!

Low Embodied Carbon, Resilience, Community Creation



PUT THE PASSIVE BACK IN PASSIVE HOUSE

Early CPHC integration starting at site planning


Passive House Experienced Developer & Architectural team

Optimized site orientation determined design for Passive measures

PUT THE PASSIVE BACK IN PASSIVE HOUSE

Site Design Challenges

Variable Landscape per Site
Passive design w/o consistent site
shading

Site Orientation

All instances of the building are oriented within 15° of south

Variable Topography per Site

Building forms reflect the 'optimized compromise' between site topo and solar orientation (stack house vs split house)

Glazing Ratios & Shading
Reviews built into Architect's design
process

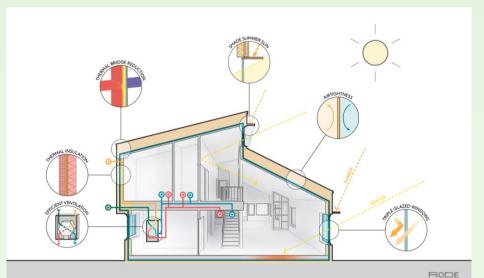
EAGLE ROCK FLAT HOUSE

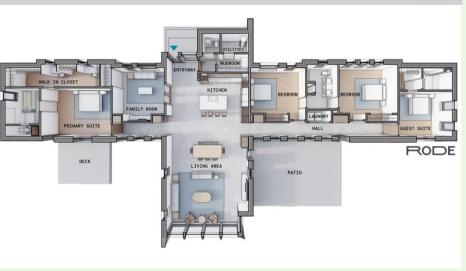
DEVELOPER / BUILDER: DMITRY BASKIN

ARCHITECT: RODE

STRUCTURAL: TLH CONSULTING
MEP: TBD - DESIGN/BUILD

CPHC: PASSIVE TO POSITIVE




MODELED ALL THREE HOUSES TO FEASIBILITY LEVEL TO DETERMINE WORST CASE SCENARIO

DESIGN TO THE WORST CASE SCENARIO

- Long Linear Layout
- Largest iCFA/Occupant
- Large Southern Glass Wall
- Architecturally open interiors cathedral ceilings
- Hidden systems

ASSEMBLIES OPTIONS AND ANALYSIS: SELECTION

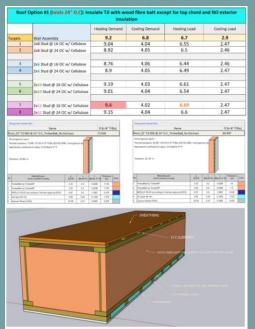
Simplification by designing for the worst case

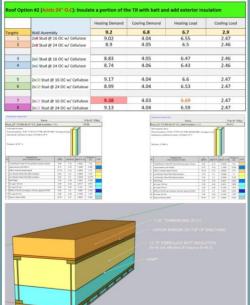
Criteria: Thermal and Airtight Performance – Constructability – Team Familiarity – Product Availability – Embodied Carbon

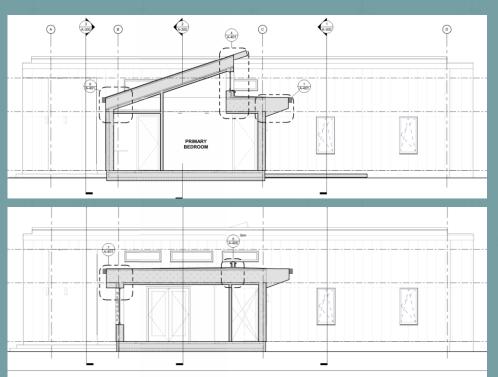
PHIUS Passive House Criteria			Split		Stacked		Flat	
CFA Docupant Quantity Invelope Area Geoling demand Geoling demand Geoling loen Geoling loed	Ueits st occ st littu/st yr littu/st yr littu/st yr Bruihr st Bruihr st Ritti/parson yr kWhy/yr	Target* n/a n/a n/a 8.9 6.4 6.4 2.7 5600.0	Results 3,845.50 5 11,666.10 8.32 2.70 5.60 1.83 4,030 21,175.40	Target* n/s n/s n/s 8.4 6.1 6.1 2.6 4850.0	Results 3,042.30 55 9657.9 7.42 2.81 5.37 1.90 1,140 9,276.40	Target* 1/a 1/a 1/a 1/a 9.2 6.8 6.7 2.9 5300.0	Results 3,473.10 5 13367.4 8.91 2.89 6.36 1.95 3,810 10,582.90	
Assemblies Assembly Type		П	Effective R-Values		Effective R-Values	┢	Effective R-Values	
Usembly Type Walls			Effective R-Values R-50 R-30	T	Effective R-Values R-50 r/4	ŧ	Effective R-Values R-55 n/a	
ssembly Type Valls oundation Wall			R-50		R-50		R-55	
ssembly Type Valls oundation Wall offit			R-50 R-30		R-SO n/a		R-55 n/a	
ssembly Type Walls foundation Wall offit Jab on Grade			R-50 R-30 R-60		R-50 n/a R-50		R-55 n/a n/a	
			R-50 R-30 R-60 R-30	U-Glass: 0	R-50 r/s R-50 R-30		8:55 n/a n/a 8:35	

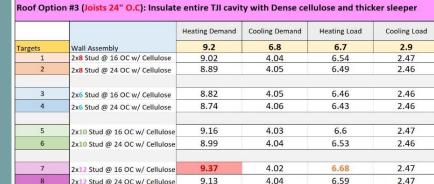
	stem Assumptions						
	System Type	Location Served and Parameters					
VAC	Energy Recovery Vernilator	All spaces are ventilated by an ERV with a 80% sensible recovery efficiency and 68% humidity efficiency.					
Ξ	Space Conditioning	Whole building is assumed to be served by a heat pump with placeholder values. The placeholders are the following: COP of 3.2 at 17 degrees and COP of 4.25 at 47 degrees. Cooling COP is 4.79.					
WHO	Heat Pump Water Heater	The building is currently using a HPWH with the following placeholder values: COP of 3.2 and HPWH EF of 4.25. The DHW consumption is 6.6 gal/Person/day.					
Z	Room Vertilation	Total supply air cate: 143 cfm	Total supply air rata: 119 cfm	Total supply air rate: 119 cfm			
ENTILATIO	Hour variations	Total exhaust air rate: \$43 cfm	Total exhaust air rate: 119 cfm	Total exhaust air rate: 119 cfm			
,	Exhaust Ventilation	No exhaust versilation; however, all models would will pass with a range hood that has an exhaust volume air flow rate of 150 cfm.					
λd	Photovoltaic Array	All models reflect no PV production.					

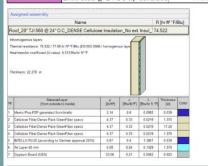
Envelope Airtightness		
Envelope Airtightness at 50 Pa (cfm/sqft)		0.06 chn/sgft
Natio. The provided PHILIS targets were crusted based on the eavelope area, XFA, dwell those results reflect no PV input.	lingu	nits and total bedrooms

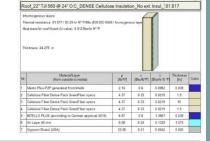

ASSEMBLIESROOF OPTIONS

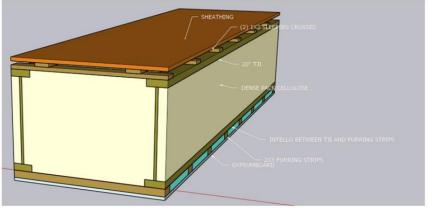

Various roof forms on the project:

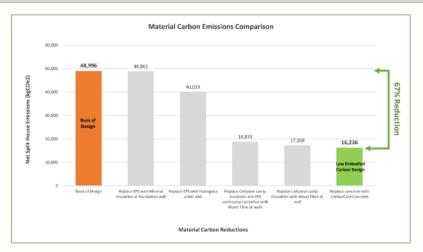

- Shed
- Gable
- Dormers
- Flat roof

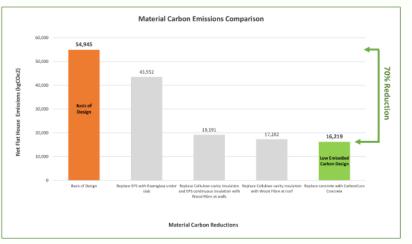

Attempt to use one roof assembly concept

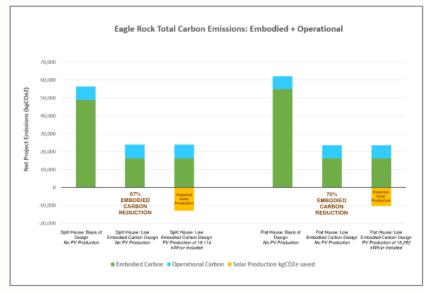

Low slope vented roof is cost savings that we can leverage.





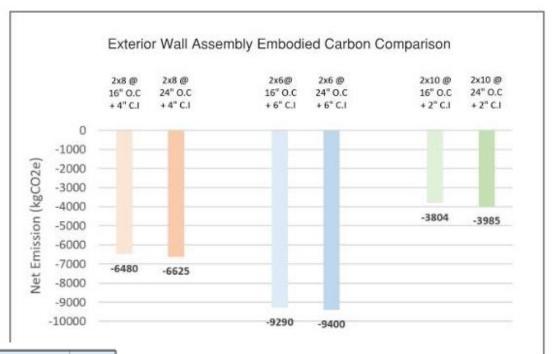





ASSEMBLIES OPTIONS AND ANALYSIS: EMBODIED CARBON

Information as **Power** and **Leverage**.

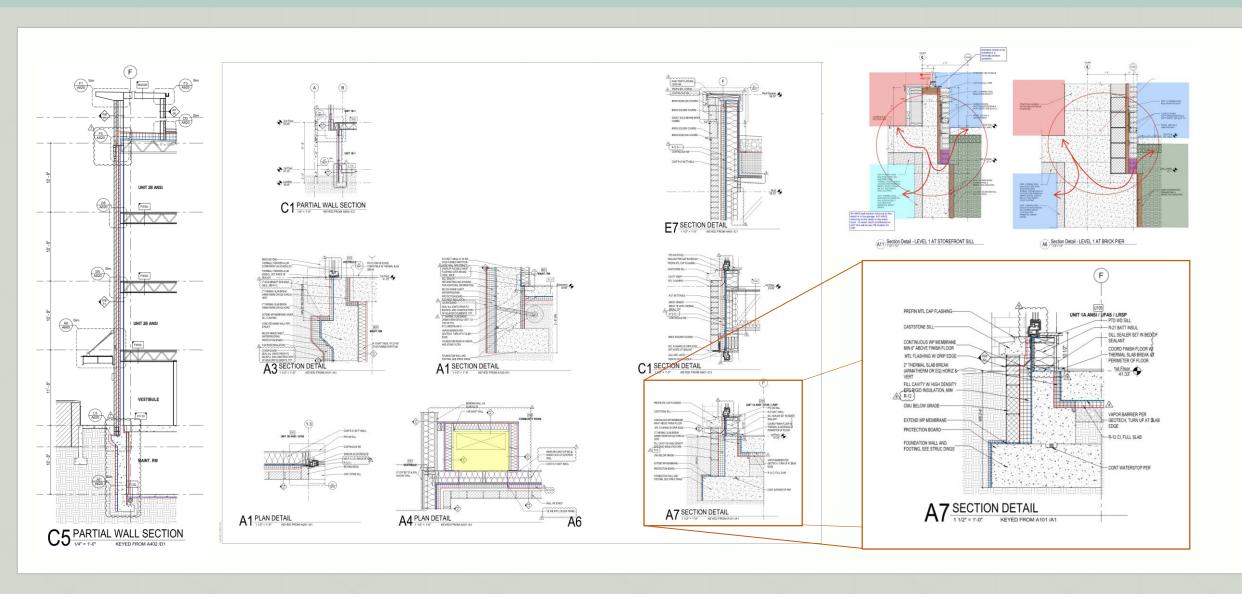
Early iterative studies of **Embodied Carbon** research and analysis led to new opportunities and added project goals.



ASSEMBLIES OPTIONS AND ANALYSIS: EMBODIED CARBON

Information as Power and Leverage.

Early iterative studies of **Embodied Carbon** research and analysis led to new opportunities and added project goals.


	Wall Assembly	Minimum exterior insulation needed to Pass PHIUS (inches)	Total Wall R-Value
1	2x8 Stud @ 16 OC w/ Cellulose	4	38.485
2	2x8 Stud @ 24 OC w/ Cellulose	4	39.529
3	2x6 Stud @ 16 OC w/ Cellulose	6	40.207
4	2x6 Stud @ 24 OC w/ Cellulose	6	40.961
5	2x10 Stud @ 16 OC w/ Cellulose	2	37.294
6	2x10 Stud @ 24 OC w/ Cellulose	2	38.712

THERMAL BRIDGING ANALYSIS

Varying house types and topography = Unique conditions for each house => Quick analysis of thermal bridge worst case scenarios.

Design team buy-in meant early conversations with the architectural and structural teams.

RESILIENCE CONCEPTS

- CPHC led conversation potential for 'Resilience Upgrade' Packages.
- Can be an easy add-on for the developer 3 solar/battery studies, 17 possible upgrades.

Eagle Rock 'Resiliency Packages'

Basis of Design: Passive Survivability: High Performance Building Envelope & Systems Passive House design principles provide a house that will maintain comfort and occupant safety yearround, with minimal energy inputs. Deep and meaningful energy use Robust thermal and airtight envelope, controlled ventilation and use of efficient MEP systems. Package 1: Net Zero - Solar PV provided on the roof to meet Net Zero Energy target. Package 2: Balanced PV and Energy Storage (Resilience) Solar PV provided on the roof. PV power production is balanced between everyday use and battery Includes critical loads review for storage system sizing. Package 3: Full Zero Energy and Resilience Solar PV provided on the roof to meet Net Zero Energy target. Additional PV for battery storage. Includes critical loads review for storage system sizing. Includes possible bi-directional EV charging / EV as house battery system.

Building COMMUNITY

MORE THAN A DEVELOPMENT – PLACEMAKING

What makes this community

unique?

What ties these houses together?

How is this place marketable?

SHARED DESIGN AESTHETIC

USONION CONCER

Building COMMUNITY

MORE THAN A DEVELOPMENT – PLACEMAKING

What makes this community

unique?

What ties these houses together?

How is this place marketable

SHARED DESIGN AESTHETIC

USONION CONCEPT

LOW-IMPACT ETHIC

CONSERVATION FIRST - DO NO HARM

EMBODIED CARBON REDUCTION

Building COMMUNITY

MORE THAN A DEVELOPMENT – PLACEMAKING

What makes this community

unique?

What ties these houses together

How is this place marketable?

SHARED DESIGN AESTHETIC

USONION CONCEPT

LOW-IMPACT ETHIC

CONSERVATION FIRST – DO NO HARM

MBODIED CARBON REDUCTION

HEALTH AND COMFORT

RESILIENT HOMES, RESILIENT COMMUNITY

SHARED RESOURCES

SHARED PURPOSE

Passive to **POSITIVE**

Passive house and low impact design

MICHAEL HINDLE CPHC – Owner, Principal michael@passivetopositive.com 240-431-1281

ANDY ALLWINE, AIA, CPHC andy@passivetopositive.com

