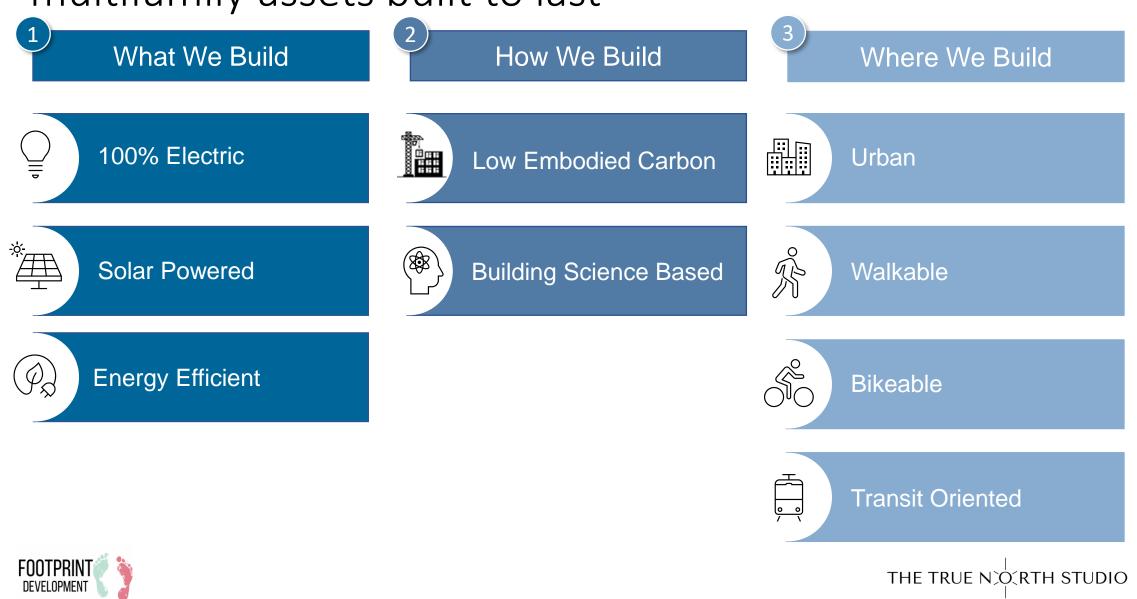


Solstice Northeast

Cost/Carbon Analysis

Building Tomorrow's Climate-Resilient Housing and Financial Returns, Today

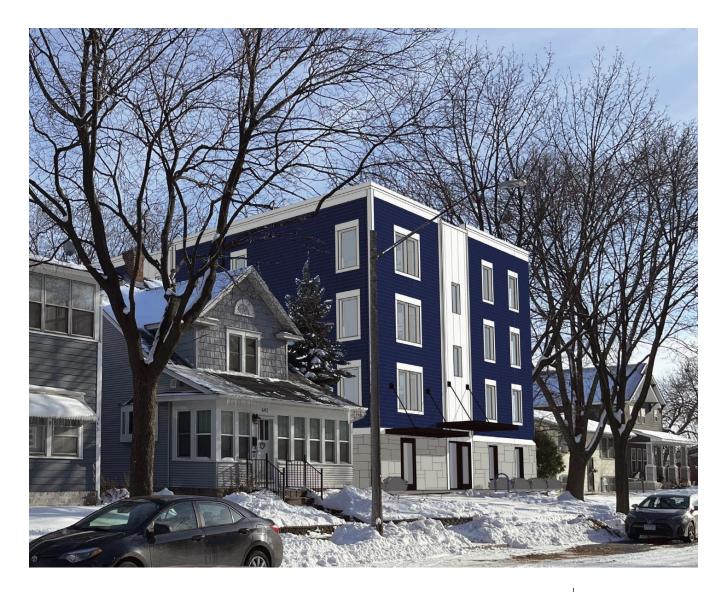
THE TRUE NO RTH STUDIO


We live in a world of increasingly constrained resources where demand for energy efficiency, durability, and air quality are market requirements. How we build, what we build and where we build matters more than ever.

Footprint Development's ambition is to deliver superior climate risk-adjusted returns, enhance Minneapolis's urban fabric, and move regional multifamily development toward more carbon-smart, climatecompatible practices ...delivering better results for people, the planet and investment partners.

Footprint develops carbon-smart, climate-resilient, multifamily assets built to last

Project Overview


A low carbon / high performance, cycling and transitoriented market-rate multifamily development located in the heart of Northeast Minneapolis, MN

CONTEXT: Infill urban lot

- No onsite vehicle parking, but a reserved onsite temporary drop-off and loading zone
- 5-minute walk to multiple transit lines
- 10-minutes to the commercial heart of both Saint Anthony East and Logan Park; two of Minneapolis' most vibrant arts, entertainment and jobs districts, and home to dozens of breweries, coffee shops, performance venues and workspaces.

AMENITIES: Ground floor Bike Hub with a 42" wide automatic door, 1.5 stalls per unit, water bottle refill station, bike repair station, and bike/pet wash station

ENERGY: 33.75 kW DC bifacial photovoltaic roof top array, projected annual energy production of ~40,000 kWh.

MN BUILDING CODE

IBC Construction VA R-2 Wood frame combustible materials, 1-hr rated from interior and exterior

MN ENERGY CODE IECC 2018, ASHARE 90.2-2016 Climate Zone 6B – Cold Wet

SIZE

18,960 GSF50'x100' Footprint, 4 Stories(23) 1-2 Bedroom UnitsDouble loaded corridor, ~6 units/floor

CONTRACT Design to PHIUS Core 2021 Target 40% reduction in MCE

Passive & low carbon are complimentary

SPECIFICATION CONSTRUCTION DESIGN Climate responsive strategies Simple massing and optimized orientation • WWR, shading, and selective solar gain Passive building principles Quality of Installation Continuous insulation / TB free ٠ ٠ Airtight **Testing and Verification** Mechanical Systems Product selection **Materials** Product verification onsite Structural Systems EPDs ٠ ٠ Evaluate substitution requests •

- Insulation Thermal / Sound Transmission
- Finishes and Cladding

Carbon/Cost Case Study

SOLSTICE

Phius Core 21 Design Certified

Low-carbon material specification

100% electric

Rooftop solar array

STANDARD

Typical local construction

Some assemblies "slightly better than code"

Gas and electric

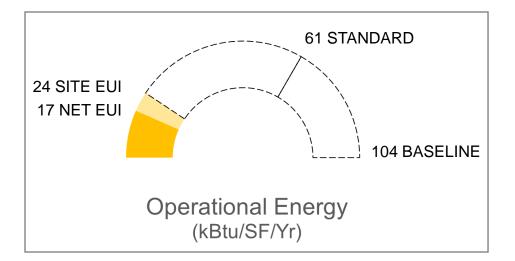
* Climate responsive design consistent

Case Study - Envelope and Systems Comparison

	Solstice	Standard
	Air Tightness: 0.06 CFM/sf @ 50Pa	Air Tightness: 3.0 CFM/sf @ 50Pa
ENVELOPE	 Windows Fiberglass - Fixed & Casement Triple Pane U-value @ 0.16 	 Windows Vinyl - Fixed & Double Hung Double Pane U-value @ 0.4
	 Insulation: Foundation: GPS @ R10/ Perimeter GPS @ R15 Wall: Cellulose + GPS @ R36 Roof: Cavity Cellulose @ R18 / Polyiso @ R36 	Insulation: • Foundation: None / Perimeter EPS @ R15 • Wall: Fiberglass Batt + Polyiso @ R24 • Roof: Polyiso @ R36
	Unit HVAC: 100% Electric Heating/Cooling: Minotair (Heat Pump) Ventilation: Minotair (Integrated ERV) Bath & Kitchen: Minotair Boost Switch 	Unit HVAC: • Gas & Electric • Heating/Cooling: Magic Pak V-Series • Ventilation: None • Bath & Kitchen: x2 Exhaust Fans @ 30 CFM
MECHANICAL	Common HVAC: • 100% Electric • (x3) Carrier Mini Splits • (x2) 200 CFM ERVs	Common HVAC: • 100% Electric • (x3) Carrier Mini Splits
	 Hot Water (x6) 80 gallon Rheem hybrid heat pump DHWH On-demand recirculation 	Hot Water(x23) Power vented gas DHWHNo recirculation

Goals and Outcomes – Energy & Emissions

Phius Core 21 Certification


• 60%-70% reduction from Standard

Net-Zero Energy Ready

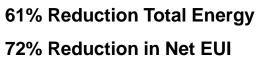
• 100% electric

AIA 2030 Commitment

• 80% energy reduction from Baseline

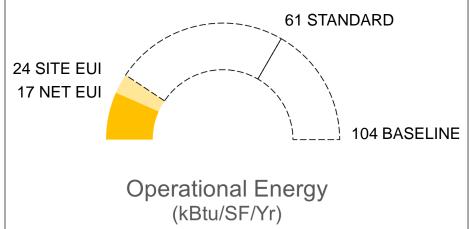
Goals and Outcomes – Energy & Emissions

Phius Core 21 Certification


• 60%-70% reduction from Standard

Net-Zero Energy Ready

• 100% electric


AIA 2030 Commitment

• 80% energy reduction from Baseline

~30% Onsite solar

84% Reduction

Goals and Outcomes – Energy & Emissions

Phius Core 21 Certification

• 60%-70% reduction from Standard

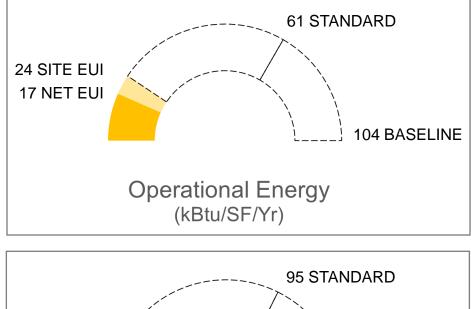
Net-Zero Energy Ready

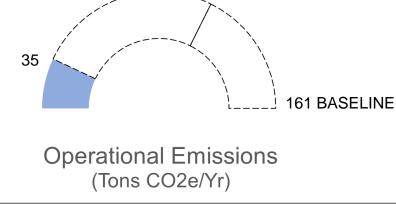
• 100% electric

AIA 2030 Commitment

- 80% energy reduction from Baseline
- 84% Reduction

~30% Onsite solar

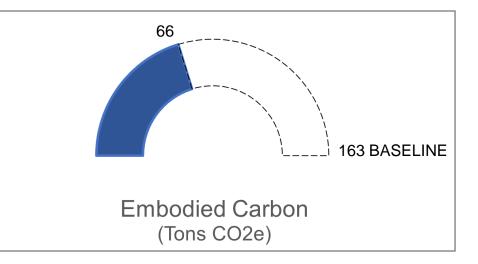

Operational Emissions


78% Reduction from 2030 Baseline

61% Reduction Total Energy

72% Reduction in Net EUI

- Currently electricity grid has greater GWP per equivalent unit of energy than natural gas
- This improves as utilities add renewable energy and decommission coal plants

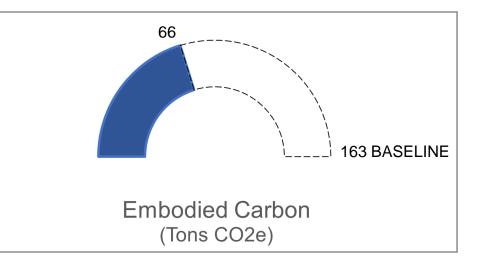


Goals and Outcomes – Emissions

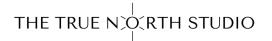
Embodied Carbon

• 40% EC reduction vs. Standard building

60% Reduction


Goals and Outcomes – Emissions

Embodied Carbon


• 40% EC reduction vs. Standard building 60% Reduction

Equivalent to 38 kgCO2e/m2

1.1 Metric Tons per occupant (59 Occupants)

A handful of specs have a disproportionate impact on Embodied Carbon

How We Build

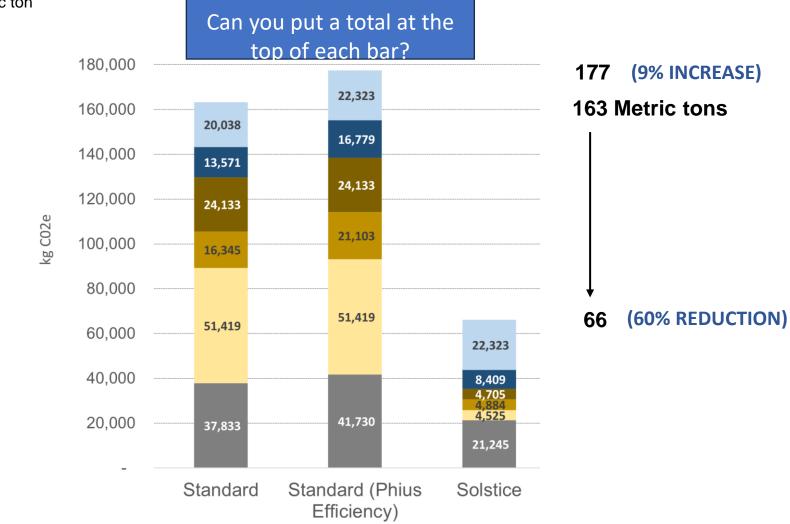
High Impact Embodied Carbon materials, design and specifications

	Concrete	Steel	Wood	Insulation	Gypsum Board
Strategies	Mix Design Structural Efficiency	Minimize Use	FSC Certified Structural Efficiency	Carbon Sequestering Low GWP Foams	Low Carbon

Substantial reductions in embodied carbon can be achieved using readily available, familiar to trades and largely cost-neutral materials

THE TRUE NO RTH STUDIO

Source: Architecture 2030 Carbon Smart Materials Pallet

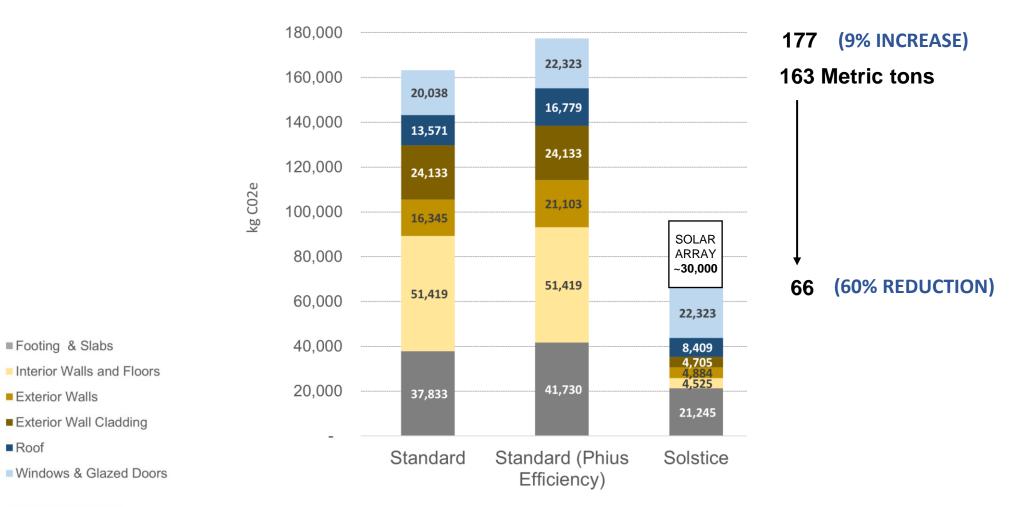

Case Study – Materials Comparison

	Solstice	Standard
	Concrete	Concrete
	 Low Carbon mix + Fibers in Slab 	 Standard mix + Wire Mesh in Slab
STRUCTURE	Framing Lumber	Framing Lumber
	 FSC Certified Lumber (excludes trusses) 	Standard Lumber
	Foundation: GPS @ R10/ Perimeter GPS @ R15	
	 Exterior Wall Sheathing: Plywood / GPS @ R15 	Foundation: None / Perimeter EPS @ R15
INSULATION	 Exterior Wall Cavity: Dense Pack Cellulose (DPC) @ 	 Exterior Wall Sheathing: Zip-R6
	 Roof: Cavity Cellulose @ R18 / Polyiso @ R36 	Exterior Wall Cavity: Fiberglass Batt @ R2
	 Interior Partitions: Cellulose 	Roof: Polyiso @ R36
		Interior Partitions: Fiberglass Batt
	Flooring	
	Interface Carpet & LVP	Flooring
	Gypsum Board	 Standard Carpet & LVP
FINISHES	 USG Ecosmart 5/8" Type X 	Gypdum Board
	Cladding	 Standard 5/8" Type X
	85% engineered wood	Cladding
	 15% thin brick veneer 	85% cement board
		 15% face brick

Net Embodied Carbon Comparison

* 1,000 kgCO2e = 1 Metric ton

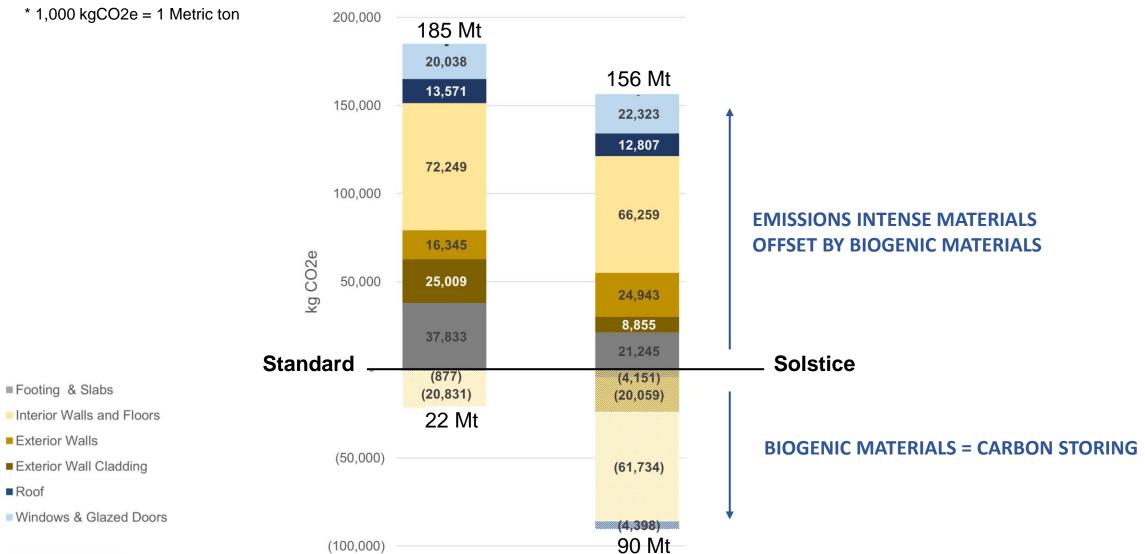
Interior Walls and Floors
Exterior Walls
Exterior Wall Cladding
Roof


■Footing & Slabs

Windows & Glazed Doors

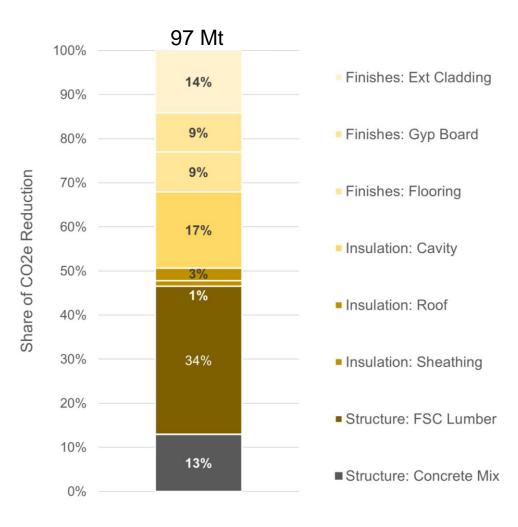
Net Embodied Carbon Comparison

* 1,000 kgCO2e = 1 Metric ton

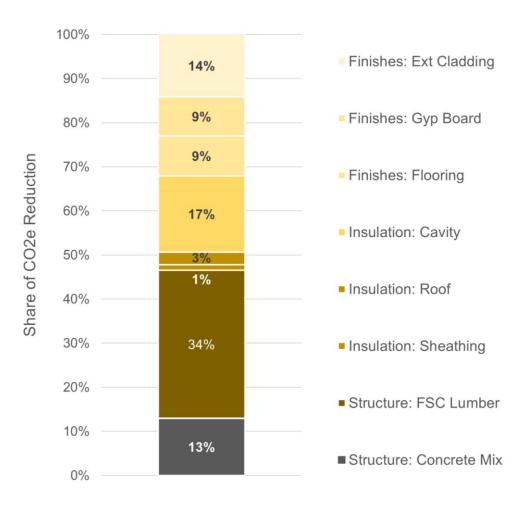

■Footing & Slabs

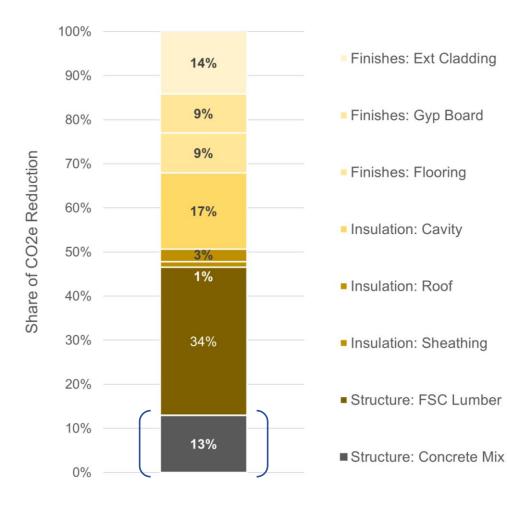
Exterior Walls

Roof

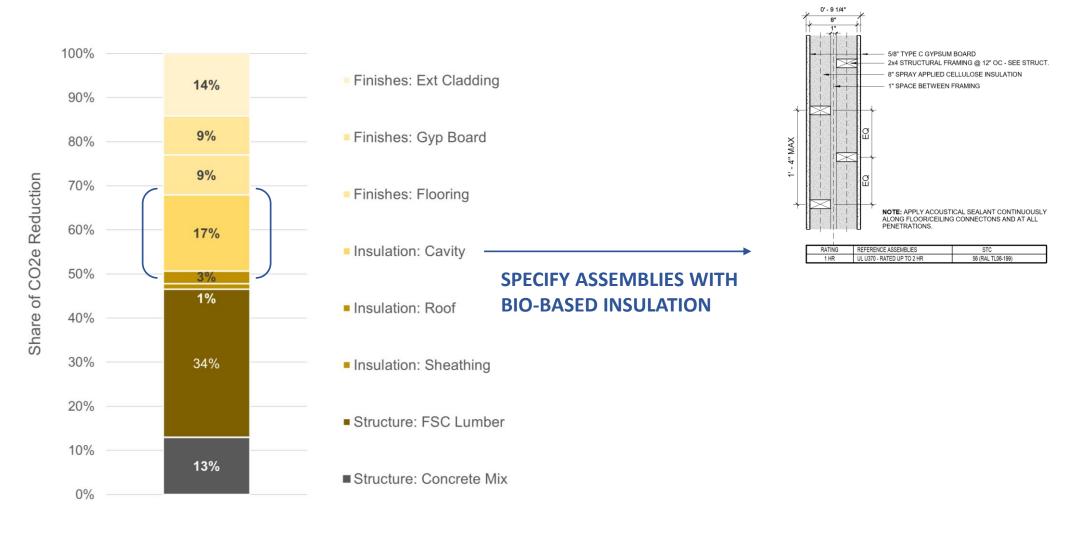

Exterior Wall Cladding

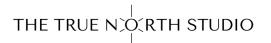
Full Embodied Carbon Comparison

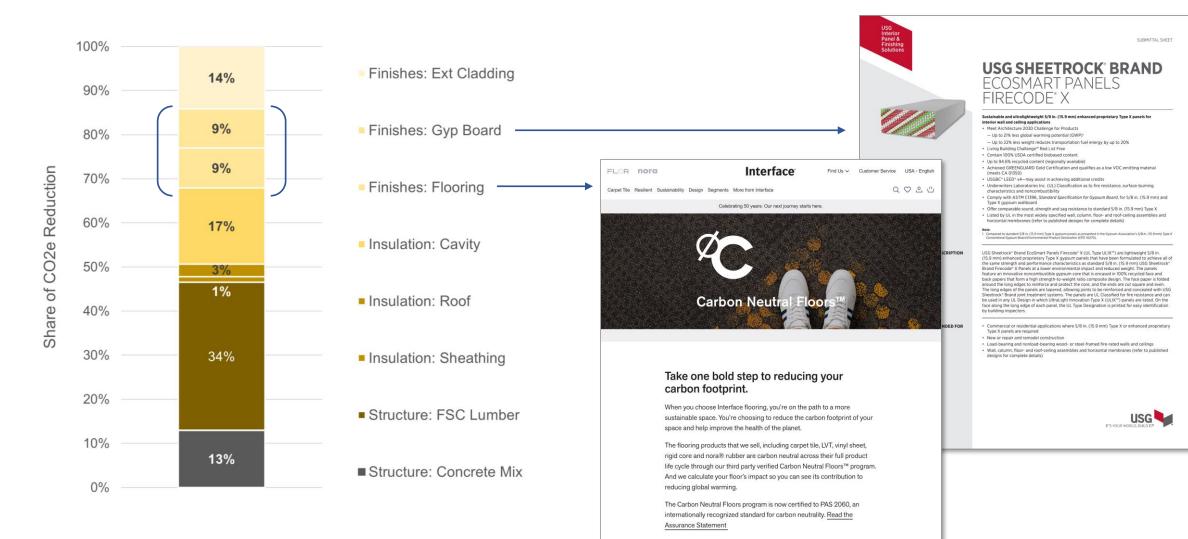

Highest Impact Materials

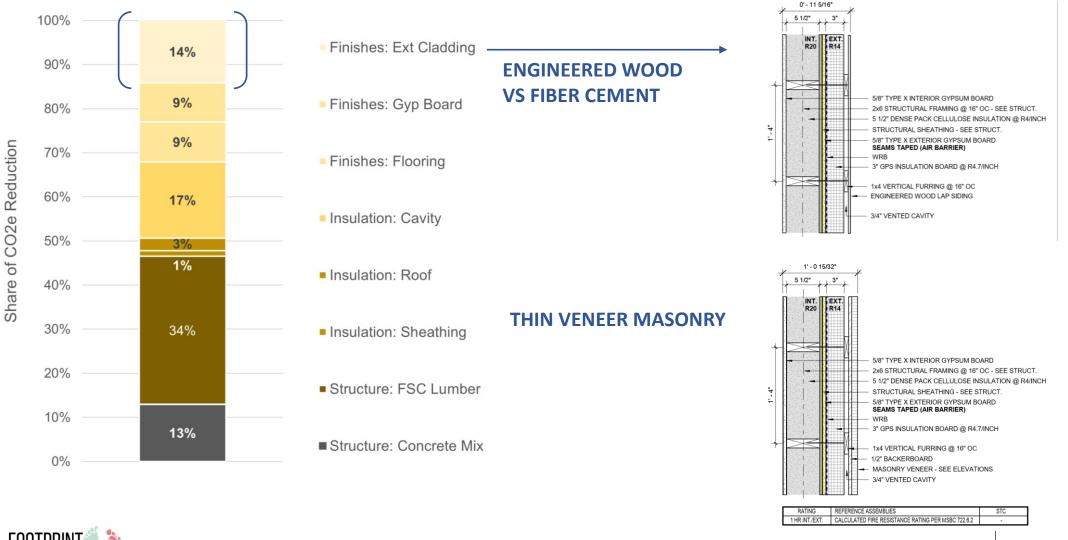

Highest Impact Materials

* BIOGENIC VALUE OF VIRGIN FOREST PRODUCTS DEBATABLE, WE CREDITED 30% OF EC STORAGE POTENTIAL

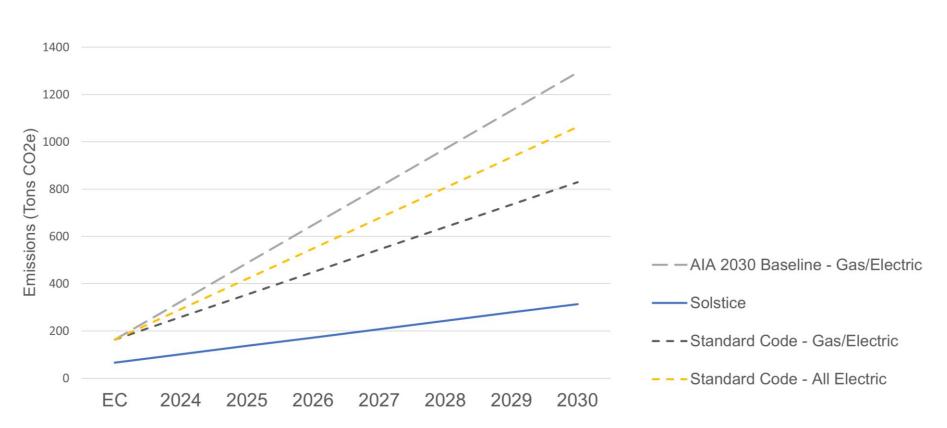

Highest Impact Materials - Concrete


This Environmental Product Declaration (EPD) reports the		
impacts for 1 m ³ of ready mixed concrete mix, meeting the following specifications:	ENVIRONMENTAL IMPACTS	
ASTM C94: Ready-Mixed Concrete	Declared Product: Mix R1003 • Apple Valley Plant	
 UNSPSC Code 30111505: Ready Mix Concrete 	Description: 3000 NO AIR	
 CSA A23.1/A23.2: Concrete Materials and Methods of Concrete Construction 	Compressive strength: 3000 PSI at 28 days	
CSI Division 03-30-00: Cast-in-Place Concrete	Declared Unit: 1 m ³ of concrete	
	Global Warming Potential (kg CO ₂ -eq)	251
COMPANY	Ozone Depletion Potential (kg CFC-11-eq)	8.66E-6
AVR Inc. & Affiliates 14698 Galaxie Ave.	Acidification Potential (kg SO2-eq)	0.51
Apple Valley, MN 55124	Eutrophication Potential (kg N-eq)	0.31
	Photochemical Ozone Creation Potential (kg O3-eq)	11.6
PLANT	Abiotic Depletion, non-fossil (kg Sb-eq)	2.16E-5
Apple Valley Plant	Abiotic Depletion, fossil (MJ)	1,308
15305 Johnny Cake Ridge Apple Valley, MN 55124	Total Waste Disposed (kg)	0.02
	Consumption of Freshwater (m ³)	3.19
ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428	Product Components: natural aggregate (ASTM cement (ASTM C596), batch water (ASTM C1602), adm C194) Additional detail and impacts are reported on page three of	ixture (ASTM
·(I)·	cement (ASTM C595), batch water (ASTM C1602), adm C494)	ixture (ASTM
ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428 DATE OF ISSUE 08/13/2022 (valid for 5 years until 08/13/2027) ISO 21930-2017 Sustainability in Building Construction — Em PCR for Concrete, NSF International, Au	cement (ASTM C595), batch water (ASTM C1602), adm C494) Additional detail and impacts are reported on page three of	ixture (ASTM
ASTM International 100 Barr Harbor Drive West Conshohooken, PA 19428 DATE OF ISSUE 08/13/2022 (valid for 5 years until 08/13/2027) ISO 21930-2017 Sustainability in Building Construction — Em PCR for Concrete, NSF International, Au Sub-category PCR review was conducted	cement (ASTM C595), batch water (ASTM C1602), adm C194) Additional detail and impacts are reported on page three of informental Declaration of Building Products: serves as gust 2021 v2.1 serves as the sub-category PCR	ixture (ASTM
ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428 DATE OF ISSUE 08/13/2022 (valid for 5 years until 08/13/2027) ISO 21930-2017 Sustainability in Building Construction — Ern PCR for Concrete, NSF International, Au Sub-category PCR review was conducted Independent verification of the declaration,	cement (ASTM C595), batch water (ASTM C1602), adm C494) Additional detail and impacts are reported on page three of frommental Declaration of Building Products: serves as to gust 2021 v2.1 serves as the sub-category PCR by Thomas P. Gloria • Industrial Ecology Consultants	ixture (ASTM
ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428 DATE OF ISSUE 08/13/2022 (valid for 5 years until 08/13/2027) ISO 21930-2017 Sustainability in Building Construction — Em PCR for Concrete, NSF International, Au Sub-category PCR review was conducted Independent verification of the declaration, Third party verifier Thomas P. Gloria (Lgloria@ For additional Manufacture Representative: Josh I Software Tool: CarborCLARR	cement (ASTM C595), batch water (ASTM C1602), adm C494) Additional detail and impacts are reported on page three of Aronmental Declaration of Building Products: serves as gust 2021 v2.1 serves as the sub-category PCR by Thomas P. Gloria • Industrial Ecology Consultants according to ISO 14025:2006: □ Internal iZ external	ixture (ASTM


Highest Impact Materials – Cavity Insulation



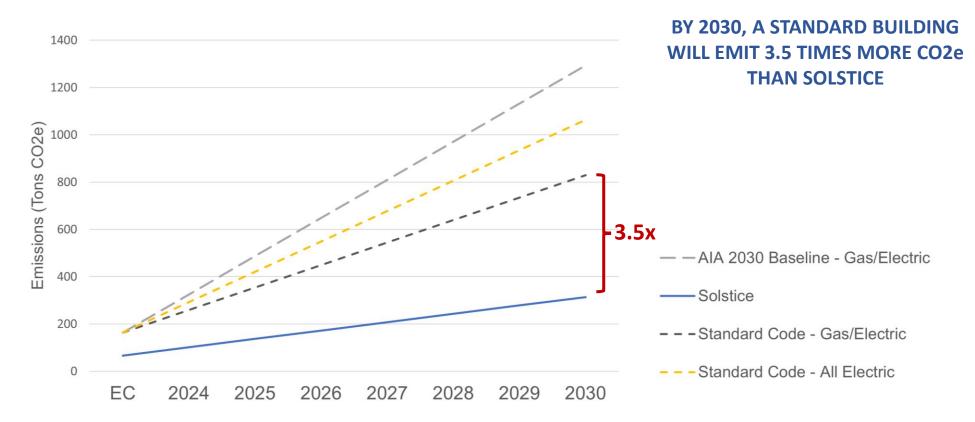
Highest Impact Materials – Finishes


Highest Impact Materials – Cladding

THE TRUE NOORTH STUDIO

FOOTPRINT

Impact

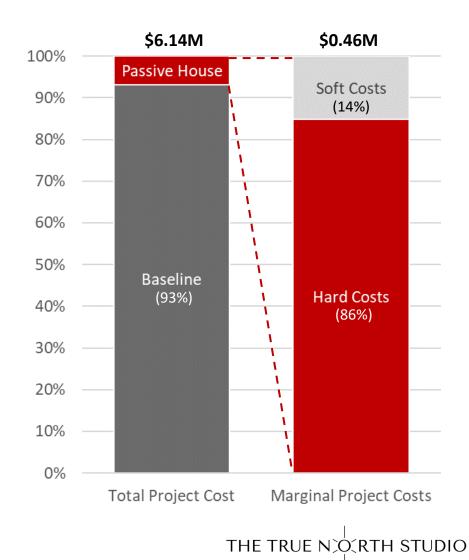


Cumulative Emissions Now-2030

* Does not reflect future grid emission factor reductions

Impact

Cumulative Emissions Now-2030


* Does not reflect future grid emission factor reductions

What are the cost implications of Carbon-Smart Passive House Constuction?

Passive House costs accounted for 7.5% of Total Cost, with Hard Costs accounting for ~86% of Marginal PH Cost

Passive House Incremental Cost Data					
Total Project Cost	Total	Share			
Base Cost	\$5,675,738	92.5%			
Phius Cost	\$462,262	7.5%			
Hard Cost	\$398,112	6.5%			
Soft Cost	\$64,150	1.0%			
Total	\$6,138,000				

HVAC, Solar and Insulation were the largest cost drivers

							Category	Project
		_		Solstice	Baseline	Incr. (\$)	Incr. (%)	Incr. (%)
100%	\$0.46M	\$0.46M	Hard Costs	\$1,181,912	\$783,800	\$398,112	50.8%	7.0%
100%		PHILOS Fee Verification	HVAC	\$476,667	\$355,934	\$120,733	33.9 %	2.1%
90%	Soft Costs		Unit HVAC	\$172,500	\$115,000	\$57,500	50%	1.0%
5070	(14%)	Energy Modeling Other	Common Space ERV	\$3,000	\$0	\$3,000	N/A	0.1%
80%		Plumbing	Labor & Other Material	\$301,167	\$240,934	\$60,233	25%	1.1%
70%		Windows (17%)	Windows	\$ 109,121	\$40,458	\$68,663	169.7%	1.2%
60%			Plumbing	\$280,000	\$250,000	\$30,000	12.0%	0.5%
50%		Insulation (21%)	Insulation	\$198,234	\$114,409	\$83,826	73.3%	1.5%
	Hard Costs	(21/0)	Below Grade	\$20,064	\$4,968	\$15,096	304%	0.3%
40%			Wall Cavity	\$14,149	\$12,472	\$1,677	13%	0.0%
	(86%)	Solar	Exterior Sheathing & Insulation	\$95,036	\$30,591	\$64,445	211%	1.1%
30%		(21%)	Roof Polyiso	\$66,378	\$66,378	\$0	0%	0.0%
			Roof Cellulos	\$2,608	<i>\$0</i>	\$2,608	N/A	0.0%
20%								
		HVAC	Other	\$117,890	\$23,000		N/A	1.7%
10%		(30%)	Roof Self-Adheared Vapor Barrier	\$13,990	\$0	\$13,990	N/A	0.2%
			Unit Gas Lines	\$0	\$23,000	(\$23,000)	N/A	-0.4%
0%			Air Sealing Contingency	\$20,000	<i>\$0</i>	\$20,000	N/A	0.4%
	Marginal Project Costs	Line Item Costs	Solar	\$83,900	<i>\$0</i>	\$83,900	N/A	1.5%
FOOTD								

FOOTPRIN

DEVELOPMENT

How can higher first costs deliver superior climate-risk adjusted returns for investors?

Resilient returns on higher upfront costs are generated through:

Utility fees – Residents pay a flat monthly fee for water, energy and waste management. Acting as the utility intermediary, owners generate a return on investments in energy efficiency and solar generation, increased NOI and cash out at refinancing, and provide occupants with lower, more predictable utility costs than available elsewhere

Reduced Turnover – Other Passive House multifamily developers report lower resident turnover because their buildings are healthier, more comfortable and quieter than standard construction. This reduces maintenance, marketing and vacancy costs.

Lower Maintenance Costs – Building-science design best practices, superior (verified & tested) build quality and unitized HVAC drive lower annual insurance, maintenance and repair costs

Lower Insurance Costs – A growing number of insurers are providing discounts for building certification and measures taken to reduce a property's carbon footprint.*

THE TRUE NO RTH STUDIO

Sources *Climate Change Creating a New Climate for Real Estate Investing, Blomberg Law (March, 2023)

Key financial definition metric definitions

IRR

Internal Rate of Return (IRR) is

the compounded rate of return on

an investment, with the inputs

being the cash inflows/(outflows)

over a specified number of time

periods (e.g. years).

Cash-on-Cash

Cash-on-Cash return is

the pre-tax cash distributions to

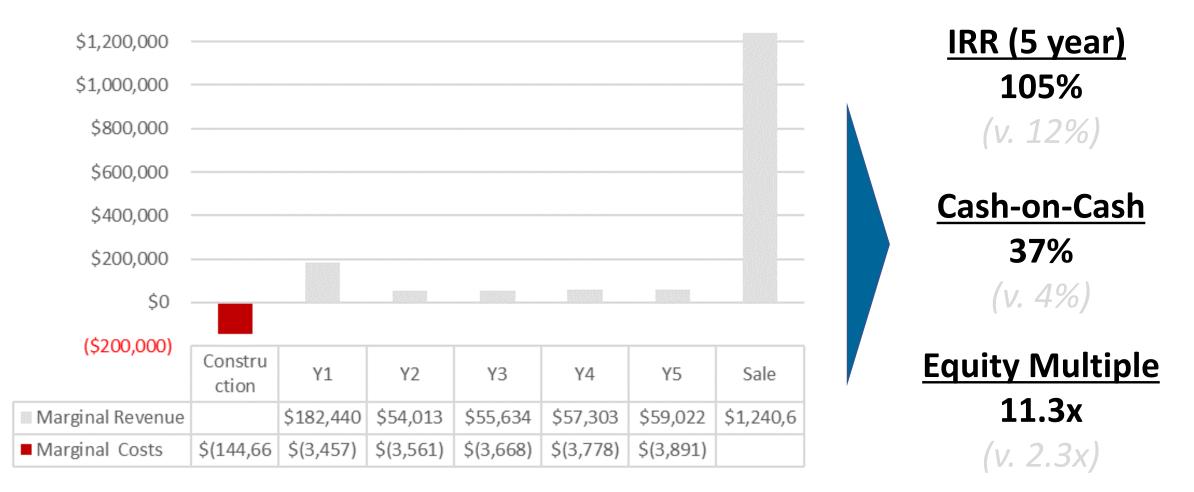
equity holders divided by the

equity invested. Often calculated

annually and as an average over

multiple years

Equity Multiple


Equity Multiple is the total cash distributions received from an investment, divided by the total equity invested

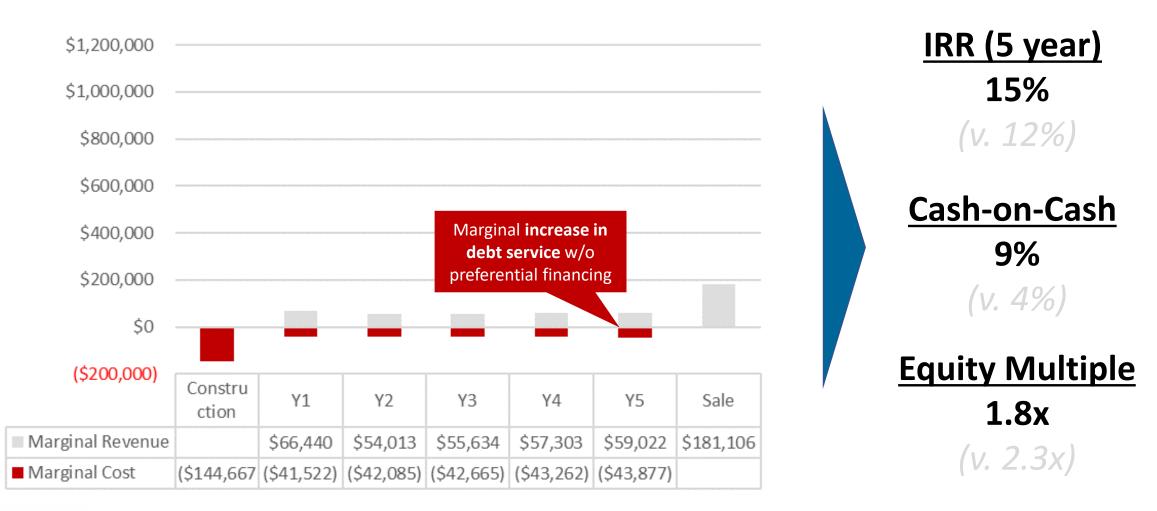
Equity Multiple = (Total Profit + Max. Equity Invested) (Max. Equity Invested)

Market Rate	Market Rate	Example
12-25%	3-10%	(\$8,588 + \$10,000) / \$10,000 =
Varies widely by geography, product type, economic cycle,	Varies widely by geography, product type, economic cycle,	1.86x
investor type, etc.	investor type, etc.	i.e. "your money back, plus 86%."

The five-year marginal IRR is 105%, with a ~37% average stabilized Cash-on-Cash return

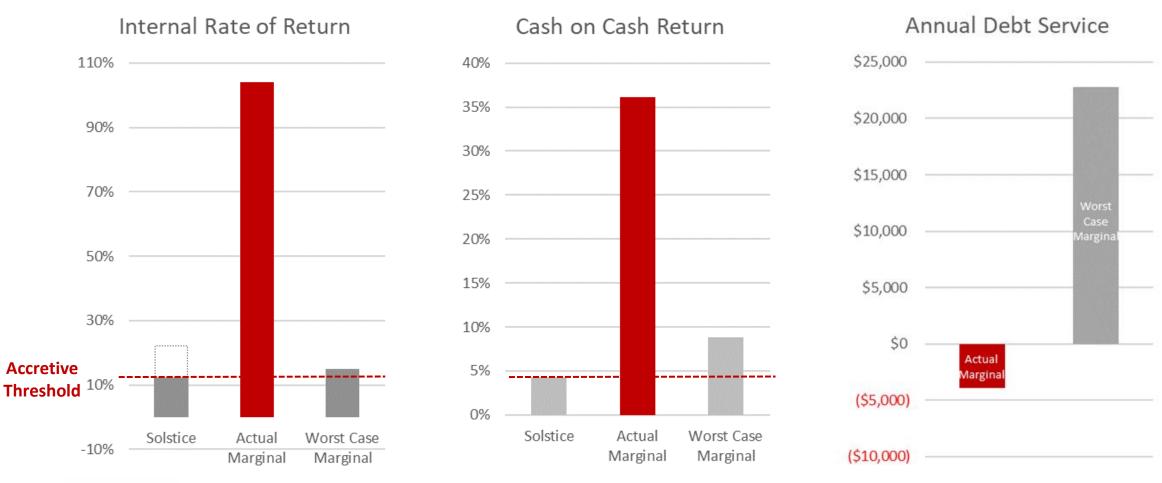
But what does a worst-case scenario look like?

- Project Specific Inputs
 - Financing
 - Interest rate
 - LTV
 - Loan Amount
 - Equity Required
 - Grants & Rebates
 - Vacancy Expense
 - Utility Fees
 - Insurance Premiums
 - Sale Premium


- Worst Case Inputs
 - Financing
 - Interest rate
 - LTV
 - Loan Amount
 - Equity Required
 - Grants & Rebates
 - Vacancy Expense
 - Utility Fees
 - Insurance Premiums

THE TRUE NO RTH STUDIO

Sale Premium



The marginal IRR of Passive House is still 15%, even excluding grant, financing, turnover and resale benefits

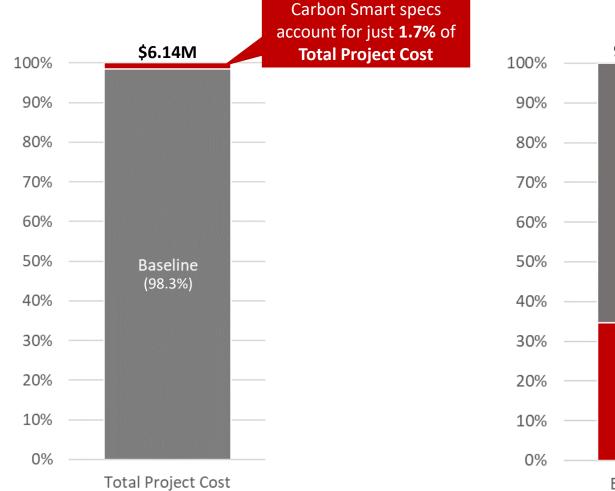
Passive House increases project value more than cost, even in a worst case where debt service increases

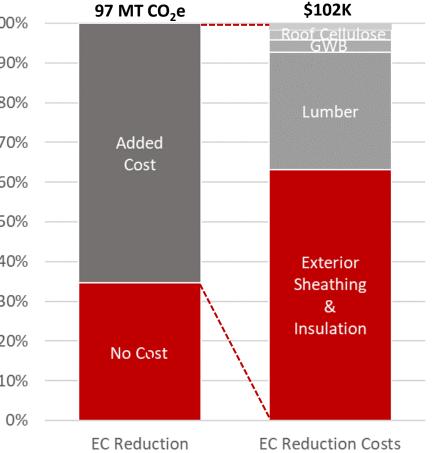
A handful of specs have a disproportionate impact on Embodied Carbon

How We Build

High Impact Embodied Carbon materials, design and specifications

	Concrete	Steel	Wood	Insulation	Gypsum Board
Strategies	Mix Design Structural Efficiency	Minimize Use	FSC Certified Structural Efficiency	Carbon Sequestering Low GWP Foams	Low Carbon


Substantial reductions in embodied carbon can be achieved using readily available, familiar to trades and largely cost-neutral materials


THE TRUE NO RTH STUDIO

Source: Architecture 2030 Carbon Smart Materials Pallet

~35% of EC reductions cost nothing; exterior insulation had the lowest 'Carbon Return on Cost'

Certainty of impact & cost are highly variable

Marginal Cost vs. Embodied Carbon \$80,000 \$60,000 Marginal \$40,000 Cost 1 **High ROI + High Certainty** \$20,000 \$-Embodied (20,000)Carbon Reduction (40,000) 2 Sheathing & Gyp. Wall Roof Wall Cavity ® Cladding Concrete Lumber Flooring Cellulose ® Exterior ® Board ■ Kg of CO2e Reduction (14,448) (34, 276)(17, 673)(13, 234)(9,211)(9,059)(2,857)(1, 309)Carbon Smart Costs \$800 \$-\$-Ś-\$30,000 \$3,200 \$2,608 \$64,445

N/A

N/A

(2.83)

Carbon ROI

(1.14)

(22.09)

N/A

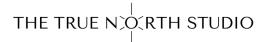
THE TRUE NO RTH STUDIO

(0.02)

(1.10)

Key Takeaways for missing middle housing

- Economically rational investors will choose Passive House at this scale (in current market conditions)
 - This should also apply to larger scale projects, but may not apply to smaller scale
- Passive House financial returns are better...even without incentives or adjusting for climate risk
- Major Embodied Carbon reductions can be achieved for no cost
- Start with structural for Embodied Carbon. Invest marginal dollars in Wall Cavity Insulation & Gypsum Board


Questions?

Cody Fischer

Cody@footprintdev.com

Abby Meuser-Herr abby@thetruenorth.studio

Low carbon concrete is readily available, easy to specify and (largely) cost equivalent

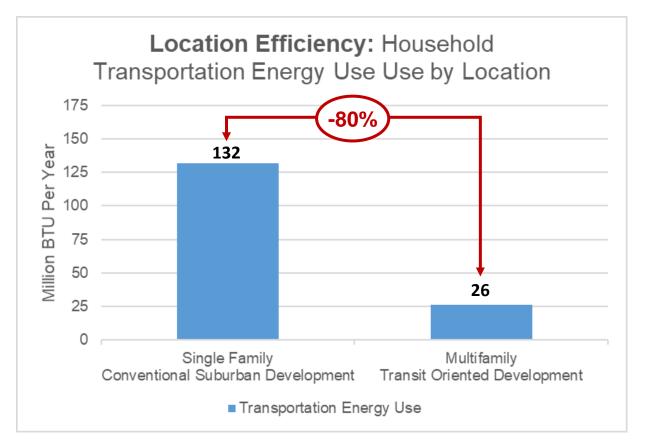
MEYER BORGMAN JOHNSON

OUTLINE SPECIFICATION ATTACHMENT 2

Performance-Based Concrete Mix Schedule for 635 Van Buren Apartments March 25, 2022

The goal of this form is to procure bids for concrete with the lowest feasible Global Warming Potential (GWP) per cubic yard, while achieving adequate strength, durability, workability, and finishability for each mix application. Bidders, please review Tables 1 and 2 for mix requirements, then complete Table 3 with bid information. For questions related to mix performance requirements or GWP target compliance options, please contact:

Eric Borchers, PE | eborchers@mbiene.com | 612-746-6662


Table 1: Global Warming Potential (GWP) Targets

Class Applicat 1A Footing: 1B Footing: 2A Foundst 2B Foundst 3A Interior		AVR Inc & Affiliates 1/18/2023						
3B Interior 4A Exterior 4B Exterior	Class	Application	Estimated	Cement	GWP	Est GWP	Unit Price	Est Cost
Notes:			Conc Vol	Content	[kgCOe/yd^3]		\$/yd^3	
 Two con complian specific r 			(cu yd)	[yd^3]	or			
specific (values,					[kgCo2/m^3]			
 If Portlar is used, ; The use tends to 	1A	Footings (baseline)	26		179	4,654	\$ 122.00	\$ 3,172.00
 Type III B Gibbel w sometim 	2A	Foundation walls and piers (baseline)	46		234	10,764	\$ 131.00	\$ 6,026.00
Table 2: Basic	3A	Interior Slab on Grade (baseline)	55		251	13,805	\$ 160.00	\$ 8,800.00
Class Applicat	4A	Exterior Slab on Grade (baseline)	3		257	771	\$ 134.00	\$ 402.00
1A Footings 1B Footings			130			29,994		\$ 18,400.00
2A Foundat 2B Foundat						30.0	tonnes	
3A Interior 3B Interior								
4A Exterior 4B Exterior	1B	Footings (alternate)	26		175	4,550	\$ 122.00	\$ 3,172.00
Notes:	2B	Foundation walls and piers (alternate)	46		138	6,348	\$ 131.00	\$ 6,026.00
 All concr Drying sl with AST 	3B	Interior Slab on Grade (alternate)	55		222	12,210	\$ 160.00	\$ 8,800.00
days of a 8. The inter	4B	Exterior Slab on Grade (alternate)	3		234	702	\$ 134.00	\$ 402.00
accelera 9. Alimitec expected			130			23,810		\$ 18,400.00
						23.8	tonnes	

Footprint's transit-oriented multifamily homes radically reduce household transportation energy consumption

Where We Build

Transit Oriented Multifamily households use ~80% less energy on transportation than single-family home households in autodependent locations

Source: U.S. Environmental Protection Agency (March 2011); "Location Efficiency and Housing Type"

Climate risks are not yet widely or accurately priced in real estate markets, but winds are shifting

Where We Build

Insurers are reassessing risk exposure in historically hot real estate markets...

Bloomberg

"Climate Is Forcing the Most Risk-Aware Industry to Reinvent Itself"

- Bloomberg (January 2023)

Tampa Bay Times

"Farmers Insurance is leaving Florida in latest blow to homeowners"

-Tampa Bay Times (July 2023)

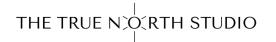
"**California** insurance market rattled by **withdrawal** of major companies"

-Associated Press (June 2023)

...and Industry leaders are trumpeting the opportunity for sophisticated investors

Data & analytics providers are proliferating as savvy investors seek to understand and manage climate risk

⁶ClimateCheck^{*}


American
 Communities
 Project

Real assets face both <u>physical</u> and <u>transitional risks</u> as markets and governments react to climate change

Where We Build

Physical Risks

• Resilience:

Certain geographies carry greater risk of **physical damage** and **declining asset** values from:

- Floods
- Fires (& air quality)
- Hurricanes
- Increased heat
- Rising sea levels
- Access to fresh water

• Tort Liability:

Owner liability for failing to anticipate how climate events could harm a tenant's safety or property

Transitional Risks

Insurance Cost and Availability

The growing number of catastrophic weather events may lead to significant increases in property insurance premiums or even limit the availability of insurance in some markets altogether.

• Emissions Regulations

Major cities throughout the US are enacting rules to curb greenhouse gases emitted from the construction and operation of buildings.

• Diligence Scopes & Methods

There will be a **flight to resilience**, **quality**, and **climate havens** as markets begin accurately pricing climate risk

