Actionable, Cost-Effective Passive Building Strategies

Ryan Abendroth, M.Arch., CPHC

Co-Founder and Consultant ryan@buildzeroconsulting.com

Actionable, Cost-Effective Passive Building Strategies PhiusCon 2023 - Houston

Objectives Part 1: Conceptual Passive House Theory Climate Specific Standards

Impacts on Cost

Part 2:

Performance Criteria Analysis Characteristics of Cost-Effective Assemblies Examples

Cost is a driver for every project

There is a cost to build ANYTHING – not just a passive house

Affordability is (still?) challenged

Interest Rates

Materials

Labor Costs

Is there a PH Premium?

Climate Dependent, but typically added costs for:

- Mechanical Systems
- **Incremental Insulation**
- High Performance Windows and Door
- Air Sealing

14 years ago: I presented at my first PhiusCon

Since then, I have worked on projects that have used just about every possible type of assembly

Also, I was the Phius Certification Manager for approx. 3 years and still review projects for Phius

Gable Home University of Illinois 2009

LAMBOD FRAMING PERSPECTIVE

Cast-in-place Concrete Exterior Foam Insulation Vented Attic Wildwood, MO

CRETE House Washington University in St. Louis, MO – 2017 US DOE Solar Decathlon Precast Concrete: footings, floors, walls, roof, gutters, planters

Loughran Home Goreville, IL – PHIUS+ 2015 Source Zero Certified SIPS wall/roof on Timber Frame

Kala Forest Ave Passive House Kansas City, MO – Phius Core 2021 Certified SIPS w/ Interior Stud Wall, Vented attic Builder: Kala Performance Homes

The Full List of Walls:

Laminated Bamboo 1x10's TJI Studs (no CI / CI) 2x4 with ext. Hanging TJI (Klingenberg Wall) 2x6 with Rigid Foam CI 2x6 with int. 2x4 w/ 2" Mineral Wool CI w/ stucco 2x6 with Zip R as Insulated Sheathing 2x6 with 4-6" EPS Nailbase w/ stucco Insulated Light Frame Steel w/ 4" Rigid Foam CI Structural Steel Frame with Fabric Enclosure

Slabs:

Concrete with EPS Concrete with XPS Concrete with Foam Glass Aggregate Pre-Cast Concrete Sandwich Panels Cast-in-Place Concrete w/ ext. Foam Insulated Concrete Form (Basement Only) Insulated Concrete Form (Full Walls) Concrete block walls in Tropical Climate SIP panels as Structure SIP panels on a TimberFrame CLT and Timberframe w/ pre-fab wood walls Historic Masonry – Interior Retrofit

Roofs:

Vented Attic with fibrous insulation Conditioned Roof with exterior foam Conditioned Roof mix of cavity and deck insulation

Conditioned Roof with spray foam

Peak Heat Load Design Concept

A quick history lesson:

- Original PHI Criteria was developed by limiting the Peak Heating Load to the amount of heat that could be carried at the airflow required for fresh air ventilation by the building occupants
- This "removed" the traditional heating system resulting in cost savings

Certification Criteria

Annual Heating Demand: **Peak Heating Load:** Annual Cooling Demand: Peak Cooling Load: Primary Energy Demand: Air Tightness:.

Certification Values

4.75 kBTU/ft²yr **3.17 BTU/hr.ft²** 4.75 kBTU/ft²yr 3.17 BTU/hr.ft² 38.1 kBTU/ft²yr 0.6 ACH₅₀

Passive House Costs (Europe)

Savings and Investment in Passive House

Passive House Costs (Europe)

Total Costs and Savings in Passive House

A CRITICAL ANALYSIS OF THE PASSIVE HOUSE STANDARD FOR THE CLIMATES OF THE UNITED STATES

There is not a scientific reason to stop insulating in most climates.

More Insulation = Less Heat Loss

Diminishing returns of insulation ARE in-effect and ARE significant, but still – more is more.

Q

ENERGY Renews

Energy Efficiency & Renewable Energy

Climate-Specific Passive Building Standards

Building America Report - 1405 July 2015 G. Wright (PHIUS), K. Klingenberg (PHIUS), Betsy Pettit, FAIA

Climate-Specific Passive Building Standards

Graham S. Wright and Katrin Klingenberg Passive House Institute US

July 2015

So how was the standard set?

Factors: **Construction Cost Climate Data Utility Cost** Occupancy **Envelope Area Interior Conditioned Floor Area**

Passive?

0

Envelope

- Insulation
- Air sealing
- Membranes
- Specialty Envelope Products
- Windows
- Doors

Systems

- Ventilation
- Heating / Cooling
- DHW
- Appliances
- Exhausts / Make-up Air

Service Fees

- CPHC
- Rater
- Phius Certification Fee
- Extra Design Services

Quick Code Comparisons

U.S. DEPARTMENT OF Estimated Improvement in Residential & Commercial Energy Codes ENERGY (1975 - 2021)Pacific Northwest 120 IECC 2004 **MEC 1980** MEC 1983 110 MEC 1993 IECC 2003 ↓ 5.6% ASHRAE 90-1975 ↓ 4.0% MEC 1992 个 0.5% ↓ 1.9% $\downarrow 0.4\%$ ↓ 8.2% **IECC 2006** 100 IECC 2009

Code requirements are trending towards greater energy efficiency every cycle

Buildings built to current codes use ~50% less energy than the 1975 Baseline

Image credit: U.S. Department of Energy

Quick Code Comparison – CZ4: St. Louis

							IL QUIL		0 0 1 001						
	CLIMATE ZONE	FENESTRATION U-FACTOR ^b	SKYLIGHT ^b <i>U</i> -FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R-</i> VALUE	F R	WOOD RAME WALL -VALUE	MA WA <i>R</i> -VA	SS F LL LUE ⁱ	FLOOR <i>R</i> - VALUE	BASE WA R-VA	MENT ^C ALL ALUE	SL <i>R</i> -VA DE	_AB ^d ALUE & EPTH	CRAWL SPACE ^c WALL <i>R</i> -VALUE
IECC 200	4 except Marine	0.35	0.60	NR	38		13	5/1	10	19	10	/13	10), 2 ft	10/13
IECC 20'	4 except Mari	ne 0.35	0.55	0.40		49	20 c	or 13+5 ^h	8/1	3	19	10/1	3	10, 2 ft	10/13
IECC 201	4 except Marine	0.35	0.55	0.40	49		20 or 1	3+5 ^h	8/13		19	10/13	6	10, 2 ft	10/13
IECC 20 ⁻	4 except Marine	0.32	0.55	0.40	49		20 or 1	3+5 ^h	8/13		19	10/13	3	10, 2 ft	10/13
IECC 202	4 except Marine	.30	0.55	0.40	60	D	30 o 20&5ci 13& 10c 0&20c	r ^h or si ^h or ci ^h	8/13	19		10ci or 13		10ci, 4 ft	10ci or 13

TABLE 402.1.1

Quick Code Comparison – CZ4: St. Louis

7	-	
	U	
		-
	(6

	CLIMATE ZONE	FENESTRATION <i>U</i> -FACTOR ^{b, i}	SKYLIGHT [♭] <i>U</i> -FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> - VALUE ^g	MASS WALL <i>R</i> - VALUE ^h	FLOOR <i>R</i> - VALUE	BASEMENT ^{c,g} WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> - VALUE & DEPTH	CRAWL SPACE ^{c,g} WALL <i>R</i> - VALUE
IECC 202 [,]	4 except Marine	.30	0.55	0.40	60	30 or 20&5ci ^h or 13& 10ci ^h or 0&20ci ^h	8/13	19	10ci or 13	10ci, 4 ft	10ci or 13
Most Recent P St. Louis, N	Project: MO	0.16 24-cont.	n/a n/a	.386 cog	60)	35		N/A Heating demand: 5.6 k Cooling demand: 4.61 k	n/a Btu/ft²yr Btu/ft²yr	26
Jessica Deem, / Virescent De	Architect			From Much ber A bit A bit more Airtightness	Code Hou ter wind more wa baseme nsulate about 5	to Pa JSE low perfo all insulat ent wall ir full slab 5x tighter	SSIVE rmance ion nsulatior than coo	n de	Heating load: 4.88 E Cooling load: 2.19 E Source energy: 3,265 E Site energy: 11.55 E 1 2 1 2 1 2 1 2 1 2 2 4 2 4	Stu/hr ft ² Stu/hr ft ² Wh/Person yr Btu/ft ² yr 4 5 6 4 5 6 4 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 8 9 7 7 9 7 7 7 9 7 9

Quick Code Comparison – CZ2: Austin

			IN	SULATION AND F	ENES	STRATIO	N REQUIRE	MENTS	S BY C	OMPON	ENT ^a				
	CLIMATE ZONE	FENESTRATION U-FACTOR ^b	SKYLIGHT [♭] <i>U</i> -FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEII F VAI	LING ₹- LUE	WOOD FRAME WALL <i>R</i> -VALUE	MAS WAI <i>R</i> -VAI	SS LL _UE ⁱ	FLOOR <i>R</i> - VALUE	BASEM WAI <i>R</i> -VAI	ENT ^C .L // .UE	SLAE R-VALU DEP1	3 ^d JE & TH	CRAWL SPACE ^c WALL <i>R</i> -VALUE
IECC 200	2	0.65 ^j	0.75	0.30	3	30	13	4/6	6	13	0		0		0
IECC 20 ⁻	2	0.40	0.65	0.25		38		13		4/6	13	0		0	0
IECC 201	2	0.40	0.65	0.25		38	13		4/6		13	0		0	0
IECC 20 ²	2	0.40	0.65	0.25		38	13		4/6	6	13	0		0	0
IECC 202	2	0.40	0.65	0.25		49	13 or 0&	10ci	4/6	1:	3	0	-	0	0

TABLE 402.1.1

Quick Code Comparison – CZ2: Austin

	CLIMATE ZONE	FENESTRATION <i>U-</i> FACTOR ^{b, i}	SKYLIGI <i>U-</i> FACT	HT [⊳] OR	GLAZED FENESTRATION SHGC ^{b, e}	CEIL <i>R</i> -VA	LING	WOOD FRAME WALL <i>R</i> - VALUE ^g	MASS WALL <i>R</i> - VALUE ^h	FLOOR <i>R</i> - VALUE	BASEMENT ^{c,g} WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> - VALUE & DEPTH	CRAWL SPACE ^{c,g} WALL <i>R</i> - VALUE
IECC 2021	2	0.40	0.65		0.25	4	9	13 or 0& 10ci	4/6	13	0	0	0
Assembly		Case 1 Minimum		Ca Ba	se 2 se Case		Ca Op	se 3 timized			Case 4 Optimized +	R4.2 Slab	Ins.
Slab		4" Concrete Slab =	R 0.42	4" (Concrete Slab = R ().42	4" (Per	Concrete Slab imeter	+ 1" XPS N	IGX	4" Concrete Sla	ab + 1" EPS	Underslab
Walls		R13 (2x4 w/ Batt Insulation)		R2′	1 (2x6 w/ Zip R3)		R24	4 (2x6 + Zip R	6)		R24 (2x6 + Zip		
Roof		R38 (Not including	framing)	R38	8 (Not including frar	ning)	R49	9 (Not includin	g framing)		R49 (Not includ	ding framing)
Windows		U-Value 0.4 BTU/ft SHGC 0.25	² h F	U-∖ SH¢	/alue 0.25 BTU/ft² h GC 0.25	F	U-\ SH	/alue 0.2 BTU/ GC 0.25	∕ft² h F		U-Value 0.2 BT SHGC 0.25	Ü/ft² h F	
Airtightness		ACH50: 5 per hour CFM50: 0.36 per ft (Envelope Area)	2	ACI CFI (En	H50: 3 per hour M50: 0.215 per ft ² velope Area)		AC CFI (En	H50: .83 per h M50: 0.06 per velope Area)	iour ft ²		ACH50: .83 pe CFM50: 0.06 p (Envelope Area	r hour er ft ² a)	
Energy Cost (Mon \$)	thly in	\$454.92			\$405.59			\$3	32. 40		200	\$304.22	
PV Required for Z	ero	39,000 kWl	า		34,800 kWh			28,5	500 kWh		26.100 kWh		
Estimated DC Sys Size	tem	26.4 kW			23.6 kW			19	9.3 kW		17.7 kW		
Estimated Number	r of												

Energy savings due to Air Tightness: 5376 kwh/year of site energy

Results in a 15.6% energy savings for the building and a cost savings of \$806.40/year or \$67.20/month @ \$0.15/kwh

	CLIMATE ZONE	FENESTRATION <i>U</i> -FACTOR ^{b, i}	SKYLIGHT [♭] <i>U</i> -FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> - VALUE ^g	MASS WALL <i>R</i> - VALUE ^h	FLOOR <i>R</i> - VALUE	BASEMENT ^{c,g} WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> - VALUE & DEPTH	CRAWL SPACE ^{c,g} WALL <i>R</i> - VALUE
IECC 2021	2	0.40	0.65	0.25	49	13 or 0& 10ci	4/6	13	0	0	0

Baseline:

Slab R = .42 Wall R = 18.1 Roof R = 38 Slab Per. = R5, 2'

Window U = 0.25Window SHGC= 0.25Airtightness = $0.06 \text{ cfm}_{50}/\text{ft}^2$

Wall R-Value: 18.1

Energy savings due to increased R-value: 109.8 kwh/year of site energy

Results in a 0.38% energy savings for the building and a cost savings of \$16.47/year or \$1.3725/month @ \$0.15/kwh

	CLIMATE ZONE	FENESTRATION <i>U</i> -FACTOR ^{b, i}	SKYLIGHT [♭] <i>U-</i> FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> - VALUE ^g	MASS WALL <i>R</i> - VALUE ^h	FLOOR <i>R</i> - VALUE	BASEMENT ^{c,g} WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> - VALUE & DEPTH	CRAWL SPACE ^{c,g} WALL <i>R</i> - VALUE
IECC 2021	2	0.40	0.65	0.25	49	13 or 0& 10ci	4/6	13	0	0	0

Baseline:

Slab R = .42Wall R = 18.1Roof R = 38Slab Per. = R5, 2'

Window U = 0.25Window SHGC= 0.25 Airtightness = $0.06 \text{ cfm}_{50}/\text{ft}^2$

Roof R-Value: 38

Energy savings due to increased R-value: 106.3 kwh/year of site energy

Heating load:

Cooling load:

Source energy:

Site energy

Results in a 0.37% energy savings for the building and a cost savings of \$15.95/year or \$1.33/month @ \$0.15/kwh

Energy savings due to decreased U-value: 230.9 kwh/year of site energy

Results in a 0.80% energy savings for the building and a cost savings of \$34.64/year or \$2.89/month @ \$0.15/kwh

Saving \$\$\$\$ on windows and Doors -Tips

Q

• Work with the manufacturer!

- Unilux Example
- Alpen Example
- Zola Example
- These things are not unique but exist for all manufacturers and small tweaks can make a huge difference in price with minimal design impact

• Window Types

- Fixed vs Operable
- Material Dependent

Doors

- Should have multipoint locks.
- Lift slide if sliding
- · Solid doors do not need to be from the window manufacturer

TR6 Balanced

Calculation base	d on ISO 1(0077-2, EN	l 673, EN 410					
Product name:	Alpen Tyr	ol TR6 Til	t Turn			Center	r-of-glass prop	perties
ASHRAE/IECC /DOE North American Climate Zone	South- facing	North, East, West - facing	Pa	PHIUS	us	Balanc	ced-6 TGT N	o Grids
			Whole-w	indow installe	d U-value		Ucog-Value	
Climate specific	recommer	ndations:	W/m2K	BTU/hr.ft2.F		SHGC	W/m2K	BTU/hr.ft2.F
8			0.92	0.16		0.386	0.677	0.119
7			0.91	0.16		0.386	0.663	0.117
6			0.91	0.16		0.386	0.658	0.116
5			0.91	0.16		0.386	0.660	0.116
4			0.91	0.16		0.386	0.665	0.117
Marine North		\checkmark	0.92	0.16		0.386	0.668	0.118
Marine South	\checkmark		0.92	0.16		0.386	0.673	0.119
3	\checkmark		0.92	0.16		0.386	0.670	0.118
2 West			0.93	0.16		0.386	0.685	0.121
2 East			0.93	0.16		0.386	0.685	0.121
Alpen Tyrol TR6 Ti	ilt Turn		F	RAME		Psi-sp	pacer	Psi-opaque
Super Spacer S2 P	remium	Fram	ne height	U-fr	ame			
		mm	in	W/m2K	BTU/hr.ft2.F	W/mK	BTU/hr.ft.F	W/mK
	Head	117	4.61	0.97	0.17	0.032	0.018	0.156
	Sill	117	4.61	0.97	0.17	0.032	0.018	BTU/hr.ft.F
	ieπ jamb	117	4.61	0.95	0.17	0.032	0.018	0.090 Grade C
Valid through Ma	av 2025	117	4.01	0.95	0.17	0.032	0.010	Grade C
vana anough ivia	17 2025							

TR6 PH+ Balanced

Calculation based	d on ISO 10	0077-2, EN	1 673, EN 410					
Product name:	Alpen Tyr	ol TR-6 Th	in Glass Triple	e Tilt-Turn		Cente	r-of-glass prop	perties
ASHRAE/IECC /DOE North American Climate Zone	South- facing	North, East, West - facing	Pas	PHIUS sive House Institute	US	Alpen Balan	ced-6 PH+ TG	T No Grids
			Whole-w	indow installe	d U-value		Ucog-Value	
Climate specific r	ecommen	dations:	W/m2K	BTU/hr.ft2.F		SHGC	W/m2K	BTU/hr.ft2.F
8			0.90	0.16		0.386	0.664	0.117
7			0.88	0.16		0.386	0.630	0.111
6			0.85	0.15		0.386	0.578	0.102
5			0.84	0.15		0.386	0.564	0.099
4		\checkmark	0.83	0.15		0.386	0.555	0.098
Marine North		\checkmark	0.83	0.15		0.386	0.558	0.098
Marine South	\checkmark		0.83	0.15		0.386	0.563	0.099
3	\checkmark		0.83	0.15		0.386	0.560	0.099
2 West			0.84	0.15		0.386	0.573	0.101
2 East			0.84	0.15		0.386	0.573	0.101
Alpen Tyrol TR-6 T	hin Glass T		FF	RAME		Psi-s	pacer	Psi-opaque
Triseal Premium	iseal Premium Fra			U-fi	ame	y	Ł	
	mm			W/m2K	BTU/hr.ft2.F	W/mK	BTU/hr.ft.F	W/mK
	Head	117	4.61	0.94	0.17	0.030	0.017	0.152
	Sill	117	4.61	0.94	0.17	0.030	0.018	BTU/hr.ft.F
	left jamb	117	4.61	0.93	0.16	0.030	0.018	0.088
	right jamb	117	4.61	0.93	0.16	0.030	0.018	Grade B

I find this upgrade generally makes sense!

Valid through December 2021

TR6 PH+ Balanced

Calculation based or	n ISO 10	077-2 <i>,</i> EN	l 673, EN 410					
Product name: Al	pen Tyr	ol TR-6 Th	nin Glass Tripl	e Tilt-Turn		Center	r-of-glass prop	perties
ASHRAE/IECC /DOE North American S Climate Zone fi	outh- acing	North, East, West - facing	Pa	PHIUS ssive House Institute	US	Alpen Balan	ced-6 PH+ TG	Γ No Grids
			Whole-w	vindow installe	ed U-value		Ucog-Value	
Climate specific rec	ommen	dations:	W/m2K	BTU/hr.ft2.F		SHGC	W/m2K	BTU/hr.ft2.F
8			0.90	0.16		0.386	0.664	0.117
7			0.88	0.16		0.386	0.630	0.111
6			0.85	0.15		0.386	0.578	0.102
5			0.84	0.15		0.386	0.564	0.099
4		\checkmark	0.83	0.15		0.386	0.555	0.098
Marine North		\checkmark	0.83	0.15		0.386	0.558	0.098
Marine South	\checkmark		0.83	0.15		0.386	0.563	0.099
3	\checkmark		0.83	0.15		0.386	0.560	0.099
2 West			0.84	0.15		0.386	0.573	0.101
2 East			0.84	0.15		0.386	0.573	0.101
			•					
Alpen Tyrol TR-6 Thin	Glass T		F	RAME		Psi-sp	bacer	Psi-opaque
Triseal Premium		Fran	ne height	U-f	rame	Ч	ų	
		mm	in	W/m2K	BTU/hr.ft2.F	W/mK	BTU/hr.ft.F	W/mK
	Head	117	4.61	0.94	0.17	0.030	0.017	0.152
	Sill	117	4.61	0.94	0.17	0.030	0.018	BTU/hr.ft.F
 	eft jamb	117	4.61	0.93	0.16	0.030	0.018	0.088
rig Valid through Decer	int jamb	117	4.61	0.93	0.16	0.030	0.018	Grade B

Q

TR9 PH+ Balanced

Calculation based on ISO 10	077-2 <i>,</i> EN	673, EN 410					
Product name: Alpen Tyr	ol TR-9 PH	l+ Tilt Turn			Cente	r-of-glass prop	oerties
ASHRAE/IECC /DOE North American South- Climate Zone facing	North, East, West - facing	Pass	PHIUS ive House Institute	US	Alpen Bala	anced-9 PH+	No Grids
		Whole-wi	ndow installe	ed U-value		Ucog-Value	
Climate specific recommen	dations:	W/m2K	BTU/hr.ft2.F		SHGC	W/m2K	BTU/hr.ft2.F
8		0.75	0.13		0.333	0.417	0.074
7		0.74	0.13		0.333	0.397	0.070
6	\checkmark	0.72	0.13		0.333	0.376	0.066
5	\checkmark	0.72	0.13		0.333	0.373	0.066
4	\checkmark	0.72	0.13		0.333	0.376	0.066
Marine North	\checkmark	0.72	0.13		0.333	0.378	0.067
Marine South		0.72	0.13		0.333	0.381	0.067
3		0.72	0.13		0.333	0.379	0.067
2 West		0.73	0.13		0.333	0.388	0.068
2 East		0.73	0.13		0.333	0.388	0.068
Alpen Tyrol TR-9 PH+ Tilt Tur		FF	AME		Psi-s	pacer	Psi-opaque
SS-D	Fram	ie height	U-f	rame	ч	Р Р	
	mm	in	W/m2K	BTU/hr.ft2.F	W/mK	BTU/hr.ft.F	W/mK
Head	117	4.61	0.86	0.15	0.047	0.027	0.157
Sill	117	4.61	0.86	0.15	0.047	0.027	BTU/hr.ft.F
left jamb	117	117 4.61 0.85 0 117 4.61 0.85 0			15 0.047 0.027 0.091		
right jamb	117	4.61	0.85	0.15	0.047	0.027	Grade C

I find this upgrade generally doesn't make sense (CZ4 and below)!

Window Comparison

Window Comparison						spec lower 0.25	spec. 0.2 - 0.25							
Manufacturer	Type (uPVC, Wood, Wood/Alu, Alu)	Total incl. Shipping	Glass Tempered or anneald	Color int	Color Ext	U Value	SHGC	Fixed	Operable	spacer	VT	Shi	pping	Total incl. Shipping
	Wood	\$ 122,536.00	annealed	Timber	Timber	0.11	0.32			black, technoform	70-73	\$	12,000.00	\$ 122,536.00
	uPVC	\$85,116.74 double Approx. \$97,884 triple	annealed	White	White	0.26	window quote: 0.28, data sheet 0.38		0.2494-0.2655	white or black	69	\$	3,500.00	\$85,116.74 double Approx. \$97,884 triple
Shhh	Aluminium	\$123,422 double \$ Triple (about 6k higher)	Tempered	White	White	0.09	0.34	0.89-0.96	1.1-1.4	black	61	\$	7,000.00	\$123,422 double \$ Triple (about 6k higher)
	uPVC	\$ 121,233.26	Tempered	White 9016	White 9016	0.17	0.23			steel brushed/black	0.48			\$ 121,233.26
it's a Secret	Wood/Alu	\$ 148,554.11	annealed	natural	black	0.09	0.317		0.63	black	56			\$ 148,554.11
	uPVC	\$ 102,043.00		White	White		0.37 operable, 0.44 fixed	0.25	0.26	grey	53-63	\$	5,800.00	\$ 102,043.00
	uPVC	\$60,594 (double) \$66,572		White	White		0.24-0.36 0.23-0.34	0.25 0.14-0.18	0.25 0.14-0.18		41-61 37 -56		900	\$60,594 (double) \$66,572

Takeaways:

- 1. Price different manufacturers its all over the place
- 2. Triple Pane is more expensive may not be worth it in some climates (see above)

Some manufacturers have very small premium to upgrade to triple pane Acoustics and Comfort must be considered.

3. UPVC frames are cheaper than wood, aluminum clad wood, or aluminum

	CLIMATE ZONE	FENESTRATION <i>U</i> -FACTOR ^{b, i}	SKYLIGHT [♭] <i>U</i> -FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> - VALUE ^g	MASS WALL <i>R</i> - VALUE ^h	FLOOR <i>R</i> - VALUE	BASEMENT ^{c,g} WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> - VALUE & DEPTH	CRAWL SPACE ^{c,g} WALL <i>R</i> - VALUE
IECC 2021	2	0.40	0.65	0.25	49	13 or 0& 10ci	4/6	13	0	0	0

Baseline:

Slab R = .42Wall R = 18.1Roof R = 38Slab Per. = R5, 2'

Window U = 0.25Window SHGC= 0.25 Airtightness = $0.06 \text{ cfm}_{50}/\text{ft}^2$

Slab Perimeter: R5.2

Slab Perimeter:

Energy Cost due to removal of Slab Edge Insulation: 460.7 kwh/year of site energy

Results in a 1.59% energy increase for the building and a cost increase of \$69.10/year or \$5.76/month @ \$0.15/kwh

	CLIMATE ZONE	FENESTRATION <i>U</i> -FACTOR ^{b, i}	SKYLIGHT [♭] <i>U</i> -FACTOR	GLAZED FENESTRATION SHGC ^{b, e}	CEILING <i>R</i> -VALUE	WOOD FRAME WALL <i>R</i> - VALUE ^g	MASS WALL <i>R</i> - VALUE ^h	FLOOR <i>R</i> - VALUE	BASEMENT ^{c,g} WALL <i>R</i> -VALUE	SLAB ^d <i>R</i> - VALUE & DEPTH	CRAWL SPACE ^{c,g} WALL <i>R</i> - VALUE
IECC 2021	2	0.40	0.65	0.25	49	13 or 0& 10ci	4/6	13	0	0	0

Baseline:

Slab R = .42Wall R = 18.1Roof R = 38Slab Per. = R5, 2'

Window U = 0.25Window SHGC= 0.25 Airtightness = $0.06 \text{ cfm}_{50}/\text{ft}^2$

Energy savings due to increased R-value: 2007.8 kwh/year of site energy

Site energy:

Results in a 6.92% energy savings for the building and a cost savings of \$301.17/year or \$25.10/month @ \$0.15/kwh

0

- "Proper" amount of sub-slab insulation
- Drainage gravel and radon mitigation system (where required)
- Membrane between insulation and concrete slab.
- Mitigate/Eliminate Perimeter Thermal Bridge
- Sub-slab insulation choices:
 - EPS
 - XPS
 - Foam Glass Aggregates

Characteristics of a Cost-Effective Slab

- Defining the "Proper" amount of sub-slab insulation
 - Use energy modeling to increase or decrease the insulation
 - Look at the change between Heating and Cooling Demands
 - Also compare the Site/Source total energy You may be surprised.
- Start with the assumption that there should always be some sub-slab insulation even in Hot Climates CZ 1-3!

A little look under the hood:

Phius used BeOpt as part of the Phius Certification standard setting process in 2015,2018, and 2021. Looking at a limited data sample of the BeOpt runs, the optimizer chose an uninsulated slab in only 2.22% of cases nationwide! (specific locations in HI, CA, FL, TX, LA, GA)

Characteristics of a Cost-Effective Slab

What happens when a slab is insulated?

Heat loss through the slab is reduced

- In the winter, this heat loss to the ground adds to the heating demand
- In the summer, this heat loss to the cool ground is beneficial
- The heat loss to the ground is sensible heat loss
- The latent heat demand stays the same, but sensible has been cut dramatically
- The demands are similar, but the efficiency of the mechanical system determines the annual source energy use!!

Ryan's Principles of Cost-Effective Building Envelope Design

- 1. Use standard (commonly available) materials and techniques
- 2. Limit thicknesses (especially CI layers, but also the cavity)
- 3. Limit "trips around the building" by limiting the number of layers and/or number of steps involved in installation
- 4. Work with the contractor and material suppliers

Other Priority:

roof,

Reduce thermal bridging and increase airtightness by:

Aligning the insulation and airtight layers from component to component

Examples: between below grade wall and above grade wall, from wall to slab to wall, wall to wall, etc.

Characteristics of a Cost-Effective Basement

- 1. Insulation amount dialed in with energy model
- 2. Continuous Insulation + thermal bridging reduction
- 3. Connecting insulation

Slab to Basement Wall Basement Wall to Above Grade Wall

4. Air barrier on concrete wall

1. Connect to above grade wall on exterior

5. Manage Moisture

- 1. Exterior Surface Ideal
- 2. Unfaced Cavity Insulation (or none)
- 3. Footing drain and radon mitigation system

Management. 6. Limits CI to 4" Maximum

- More CI creates potential window install issues 1.
- Reveal shading can start to negatively effect energy 2. balance
- At 4" and beyond Phius requires fastener correction 3.
- 4" is often the limit for siding warranties 4.
- 4" is also the typ max thickness of thermally broken brick 5. ties
- Beyond 4", fasteners get long/heavy, install is a problem and a facade system such as a fiberalass clin and rail is

Characteristics of a Cost-Effective Wall

- Insulation amount dialed in with energy model
- Continuous Insulation + thermal bridging reduction 2.
- Insulation "in-plane" and contiguous with other 3. assemblies (roof, rim joist, basement wall, slab, etc.)
- 4. Air barrier on sheathing
- Moisture managed w/o use of specialty products 5.
 - Follows Phius' Prescriptive Guidelines for Moisture 1.

Target R-Values:

Characteristics of a Cost-Effective Roof

Method 1: Vented Attic – not conditioned

- Use underside of attic structure as air and vapor barrier
- A solid material (sheathing) is best, but membranes can work
- Drop ceiling can be used for electrical and mechanical
 - Might need to be overly large for certain systems cost increase
- Biggest advantage is using cheaper blown in fibrous Method 2: Conditioned Attic – non-vented
- Use top side of roof structure (sheathing location as the air and vapor barrier.
- Use a "nailbase" product to protect the air barrier and meet the Phius Prescriptive Requirements for moisture management
- Split Insulation above and below roof deck
- This method works on flat roofs replace nailbase with

Ventilation

ERV with small homerun ducting (Zehnder / Brink)

- 1. Easy install, airtight ducts
- 2. Acoustical benefits less sound transmission
- 3. Greater Static Pressure (UL Listing)
- 4. Equipment and duct material cost typically more than trunk +

ERV with Trunk + Branch ducting (Renewaire, Broan, Venmar, vane, Lifebreath, Fantech, Panasonic, etc.)

- 1. Duct system more difficult to fabricate and install
- 2. More acoustical concerns
- 3. More labor required
- 4. Equipment and duct material cost typically less than homeruns

Total cost depends on many factors but comes down to paying more in labor for the trunk + branch system or more in equipment for the homerun duct system and corresponding ERV.

Domestic Hot Water

- Heat Pump Water Heater (tank)
 - Located inside the thermal envelope
- Save Cost with Limited Distribution
 - Cluster plumbing fixture
 - Eliminates long runs and/or recirculation system
 - RARE!
 - "On-Demand" Re-circulation Loop
 - I see this on many projects
 - Not as cost effective, but limits wasted water
 - Does not save energy, but saves water
 - Practically required for most projects to meet ZERH standards.

Has anyone (besides me):

- Used the # of refrigeration appliances to determine the CPHC Fee?

 Compared Appliances versus the PH Premium
Kidding
Kidding
Model and Experience **Optimization**

NO MORE and NO LESS than

what is required to meet the project goals.

© Phius 2021

Strategies

Thank You

Ryan Abendroth, M.Arch., CPHC

Co-Founder and Consultant ryan@buildzeroconsulting.com

