Massachusetts Energy Code

DOER briefing for PHIUS 28 Oct 2022

Paul Ormond, DOER, Commonwealth of Massachusetts

Agenda

Framework of Massachusetts Efficiency Code

• Stretch Code: Key requirements

Specialized Code: Key requirements

Base, Stretch, Specialized – 3 options

Base Code (IECC 2021)

- New construction in towns & cities not a green community
- 52 communities

Expected from BBRS: July 2023

Stretch Code (2023 update)

- New construction in towns & cities that are a green or stretch community
- 299 communities

Residential: Jan 2023 Commercial: July 2023

Specialized Code ("Net-Zero")

- New Construction in towns & cities that vote to opt-in to this code
- Effective date:
 Typically 6-11
 months after
 Town/City vote

Stretch Code Adoption, by Community

WELLFLEET

NORTH ATTLEBOROUGH

ATTLEBORO

REHOBOTH

SEEKONK

MIDDLEBOROUGH

ROCHESTER

NEW BEDFORD

Two hundred ninety-nine (299) municipalities have adopted the Board of Building Regulations and Standards (BBRS) Stretch Code, as of November 16 2021

Base, Stretch, Specialized – 3 options

EV ready Base code 2021 IECC / ASHRAE 90.1-2019 **Modest modifications EV** ready **Key modifications** Stretch code 2021 IECC / ASHRAE 90.1- 2019 **Solar ready** All Electric OR Net Zero OR **Passivehouse EV** ready Specialized code 2021 IECC / ASHRAE 90.1- 2019 **Key modifications** Multifamily electric ready + solar **Solar ready**

Key Modifications – Stretch

Emissions, electrification, comfort, durability, and resilience benefits

Thermal Energy Demand Intensity (TEDI)

Heating TEDI

Total annual energy **delivered to** the building for space conditioning and conditioning of ventilation air, normalized by area (kBtu/sf-yr)

Cooling TEDI

Total annual energy **removed from** the building for space conditioning and conditioning of ventilation air, normalized by area (kBtu/sf-yr)

Connection between TEDI and EUI

Heating end use EUI: 2 kBtu/sf-yr

Heating efficiency: 320%

Heating efficiency: 6.4 kBtu/sf-yr

TEDI is not the same as EUI. TEDI is a measure of envelope performance, air infiltration, and ventilation energy recovery.

EUI is a measure of the above, plus equipment efficiency.

TEDI is <u>demand</u> while EUI is <u>consumption</u>

Regulating TEDI means prioritizing envelope, air infiltration, and energy recovery

Benefits of TEDI limits

Impact on heating TEDI

- 85% less heating demand
- Emissions reduced
- Electrification easier
- Comfort
- Durability
- Resilience

TEDI limits example – K-12 school

Size of School building	Heating TEDI limit (kBtu/sf-yr)	Cooling TEDI limit (kBtu/sf-yr)		
K-12 school (>= 125,000-sf)	2.2	12		
K-12 school (75,000 to 125,000)	2.7 – 0.000004 * Area (sf)	32 - 0.00016 * Area (sf)		
K-12 school (<75,000)	2.4	20		

The same models currently used for stretch code compliance also produce TEDI information

Strange equations simply draws straight line between values

Managing cooling TEDI

Managing cooling TEDI

- Low solar heat gain coefficient (SHGC) windows
- Recessed windows
- External shading
- Reduced air leakage rate

Whole building infiltration

Above photo: RDH/Advanced Building Analysis

- Limit of 0.35 cfm/sf at 75 Pa
- Mandatory field testing
- Credit for even lower air infiltration
- Passive House: routinely gets
 0.08 cfm/sf at 75 Pa

Above photo: Steven Winter Associates

Ventilation Energy Recovery

- Enthalpy recovery ratio: 70%
- Class 3 and 4: sensible recovery ratio: 50%

ER required for all but very small buildings for systems operating less than 8,000 hours per year

ER required in all cases for systems operating more than 8,000 hours per year

	Mantory Ve	entilation Energy Recovery (Systems Operating Less than 8,000 hours per year)							
		<u>P</u> E	ERCENT (%	OR AIR AT	T FULL DESIGN AIRFLOW RATE				
	Climate Zone	>=10% and <20%	>=20% and < 30%	>=30% and < 40%	>=40% and <50%	>=50% and <60%	>=60% and <70%	>=70% and <80%	>=80%
•		Design Supply Fan Airflow Rate (cfm)							
	<u>5A</u>	>= 10,000	>= 8,000	>= 2,750	0	0	0	0	0

Mantory Ventilation Energy Recovery (Systems Operating Not Less than 8,000 hours per year)								
	PERCENT (%) OUTDOOR AIR AT FULL DESIGN AIRFLOW RATE							
Climate Zone	>=10% and <20%	>=20% and < 30%	>=30% and < 40%	>=40% and <50%	>=50% and <60%	>=60% and <70%	>=70% and <80%	>=80%
	Design Supply Fan Airflow Rate (cfm)							
- A	0	0	0	0	0	0	0	(
<u>5A</u>								

Thermal bridge accounting

- "Continuous insulation" is <u>NOT</u> continuous. There are fasteners, often metal, which go through the insulation.
- Current stretch code only recognizes thermal bridges caused by wall studs. Current stretch code <u>does not recognize</u> thermal bridges caused by fasteners
- Fasteners have major impact on insulation performance

Fasteners: Not recognized by current code

Thermal bridge accounting

Fasteners made from fiberglass provide thermal break

- Solution is to include fasteners that have thermal breaks
- Thermal breaks are often <u>value engineered</u> out because code does not mandate thermal bridge accounting
- Proposed stretch code will mandate thermal bridge accounting which will help protect designs and ensure thermally broken fasteners are used.

Thermal bridge accounting

- 1. Parapet Length
- 2. Slab Lengths
- Wall to Window Transition Lengths

- Corner Length
- Opaque Brick Wall Area
- Glazing Area

- Many other thermal bridge locations not recognized by current strertch code
 - Continuous insulation
 - Brick shelves
 - Balconies/protrusions
 - Window/wall intersections
 - Parapets
 - Wall/wall intersections
 - Wall/floor intersections
- Updated stretch code does recognize these. Thermal breaks are available for all these locations

Electrification benefits

The proposed stretch code allows transition to electric heating (from gas) without increasing peak electric.

Durability benefits

A focus on heating/cooling TEDI results in:

- Smaller HVAC systems
- More robust envelope
- Less moving parts

Resilience/comfort benefits

Emissions benefits Massachusetts emission rates

Overall reduction in energy use seems modest (15%)

However, heating end use is significantly reduced (90%)

Emissions benefits Massachusetts emission rates

Emissions in 2050 Emissions (tons/yr) 75% lower ■ all other end uses current code proposed code

Overall reduction in energy use seems modest (15%)

However, heating end use is significantly reduced (90%)

The payoff is huge reduction in building emissions (75%)

Other Key Modifications: Envelope Backstop

Current IECC and ASHRAE allow <u>unlimited</u> envelope performance tradeoff.

Stretch code will mandate minimum vertical area-weighted U value performance.

Other Key Modifications: Electrification

Current IECC and ASHRAE has no requirements for electrification.

Stretch code will mandate hybrid electrification for highly-ventilated buildings and full electrification for highly-glazed buildings.

Specialized will mandate additional electrification provisions (more below)

Other Key Modifications: Tenant spaces

Tenant spaces often treated as renovation in code.

Stretch code will mandate that tenant spaces, when built for first time, are treated like new construction.

Other Key Modifications: Mixed use buildings

Mixed use buildings are not well addressed/over simplified in IECC/ASHRAE

Stretch code will mandate that each different use space separately and independently conform to respective code mandates.

Other Key Modifications: Residential

IECC 2018 & 2021 has ERI (HERS rating) optional path, that is rarely used.

MA stretch code requires a 3rd party certified energy rating – Today at HERS 55 or Phius 2018 levels.

After Jan 1, 2023 – large additions and alterations also require HERS ratings

Residential low-rise: New Construction

Stretch Code

- HERS or Phius/PHI required
- Moving towards Phius levels
 - HERS 42 for fossil-fuel use
 - HERS 45 for all-electric
- EV ready min. 1 parking space

Specialized Code

- Solar required for fossil-fuel use & pre-wiring for electrification
- Net-zero for new homes >4,000 sf

Residential low-rise: Large additions and alterations >1,000 sf

Stretch Code

- HERS or Phius/PHI required
- HERS 52 for fossil-fuel use
- HERS 55 for all-electric or solar
- HERS 58 for all-electric + Solar

Specialized Code

Same as stretch code

Base, Stretch, Specialized – 3 options

EV ready Base code 2021 IECC / ASHRAE 90.1-2019 **Modest modifications EV** ready **Key modifications** Stretch code 2021 IECC / ASHRAE 90.1- 2019 **Solar ready** All Electric OR Net Zero OR **Passivehouse EV** ready Specialized code 2021 IECC / ASHRAE 90.1- 2019 **Key modifications** Multifamily electric ready + solar **Solar ready**

Specialized Code

Meet all the requirements of stretch code

All electric systems

or

Rooftop solar where feasible and electric readiness

or

Net Zero energy on-site with all electric systems
Or electric readiness if using gas

Solar PV minimum sizing

CC105.2 On-site renewable energy. New mixed-fuel buildings shall have equipment installed for on-site renewable energy with a rated capacity of not less than 1.5 W/ft² (16.1 W/m²) multiplied by the sum of the gross conditioned floor area of the three largest floors.

Exception: Where the building site cannot meet the requirement in full with an on-site renewable energy system, the building site shall install a partial system designed to utilize not less than 75% of the *Potential Solar Zone Area*.

Examples of minimum Solar PV size:

- 4 story 200,000 sf High school: 160,000 sf on 3 largest floors
 Min. Solar = 1.5 x 160,000 = 240 kW system
- 3 story 80,000 sf Elementary
 Min. Solar = 1.5 x 80,000 = 120 kW system

Net Zero with On-site renewables

Specialized code: Passivehouse for Multi-family

Passive house (Phius or PHI) mandatory for all R-use (multifamily) buildings over 12,000-sf beginning 1 January 2024

TABLE CC101.2 MULTI-FAMILY AND R-USE COMPLIANCE

Compliance Path options by permit submittal d				
C407.3	C407.1	C407.4		
Passive house	Targeted	HERS Index		
	Performance			
Required from				
Jan 1, 2023				
Required from	Optional until	Optional until		
Jan 1, 2024	Jan 1, 2024	Jan 1, 2024		
	C407.3 Passive house Required from Jan 1, 2023 Required from	C407.3 Passive house Required from Jan 1, 2023 Required from Optional until		

Study Teams

Commercial and large multifamily

Residential low rise

Contact DOER:

Questions?

Paul.Ormond@mass.gov

Paul Ormond

https://www.mass.gov/info-details/stretch-energy-code-development-2022